giải hệ pt : 1)\(\hept{\begin{cases}x^3+x+2=2y\\3\left(x^2+x\right)=y^3-y\end{cases}}\)
2)\(\hept{\begin{cases}8x^3+2xy^2=y^6+y^4\\\sqrt{x+2}+\sqrt{y^2+5}=5\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ĐKXĐ: \(x^2+4y+8\ge0\)
PT (1) \(\Leftrightarrow\left(x-2\right)\left(x-y+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=y-3\end{cases}}\)
+) Với x = 2, thay vào PT (2): \(4\sqrt{y^2+4}=y\sqrt{4y+12}\) (\(\text{ĐKXĐ:}y\ge-3\))
\(\Leftrightarrow\hept{\begin{cases}y\ge0\\16\left(y^2+4\right)=y^2\left(4y+12\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}y\ge0\\4\left(y^3-y^2-16\right)=0\end{cases}}\)
\(\Rightarrow y=\frac{1}{3}\left(1+\sqrt[3]{217-12\sqrt{327}}+\sqrt[3]{217+12\sqrt{327}}\right)\)(nghiệm khổng lồ quá chả biết tính kiểu gì nên em nêu đáp án thôi:v)
Vậy...
+) Với x = y - 3, thay vào PT (2):
\(\left(y-1\right)\sqrt{y^2+4}=y\sqrt{y^2-2y+17}\)
\(\Rightarrow\left(y-1\right)^2\left(y^2+4\right)=y^2\left(y^2-2y+17\right)\)(Biến đổi hệ quả nên ta dùng dấu suy ra)
\(\Leftrightarrow4\left(1-3y\right)\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{3}\\y=-1\end{cases}}\)
Thử lại ta thấy chỉ có y = - 1 \(\Rightarrow x=y-3=-4\)
1/HPT\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=6-\left(x+y\right)=3\\\left(x+y\right)^2=9\end{cases}}\Rightarrow2xy=\left(x+y\right)^2-\left(x^2+y^2\right)=9-3=6\Rightarrow xy=3\)
Kết hợp đề bài có được: \(\hept{\begin{cases}x+y=3\\xy=3\end{cases}}\). Dùng hệ thức Viet đảo là xong.
\(\hept{\begin{cases}x^3-8x=y^3+2y\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=6\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6\left(x^3-y^3\right)=\left(x^2-3y^2\right)\left(8x+2y\right)\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}24xy^2-2x^2y-2x^3=0\\x^2-3y^2=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x\left(3y-x\right)\left(4y+x\right)=0\\x^2-3y^2=6\end{cases}}\)
Đơn giản rồi làm tiếp nhé
\(\hept{\begin{cases}5x^2-3y=x-3xy\\x^3-x^2=y^2-3y^3\end{cases}}\)
Với x = 0 thì y = 0
Với x \(\ne\)0 thì nhân pt trên cho x ta được
\(\Leftrightarrow\hept{\begin{cases}5x^3-3yx=x^2-3x^2y\left(1\right)\\x^3-x^2=y^2-3y^3\left(2\right)\end{cases}}\)
Lấy (1) + (2) vế theo vế được
\(\Leftrightarrow6x^3-3xy-x^2=x^2+y^2-3x^2y-3y^3\)
\(\Leftrightarrow6x^3-3xy-2x^2-y^2+3x^2y+3y^3=0\)
\(\Leftrightarrow\left(x+y\right)\left(3y^2-3xy-y+6x^2-2x\right)=0\)
Tới đây thì đơn giản roofin làm tiếp nhé
em ko biết làm :">
\(\hept{\begin{cases}2\sqrt{x-2}+3\sqrt{y-3}=14\\\sqrt{x-2}+\sqrt{y-3}=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\sqrt{x-2}+3\sqrt{y-3}=14\\2\sqrt{x-2}+2\sqrt{y-3}=10\end{cases}}\)
\(\Leftrightarrow2\sqrt{x-2}+3\sqrt{y-3}-2\sqrt{x-2}-2\sqrt{y-3}=14-10\)
\(\Leftrightarrow\sqrt{y-3}=4\Leftrightarrow y-3=16\Leftrightarrow y=19\)
\(\Rightarrow\sqrt{x-2}+\sqrt{19-3}=5\)
\(\Leftrightarrow x-2=\left(5-4\right)^2\Leftrightarrow x-2=1\Leftrightarrow x=3\)
\(\hept{\begin{cases}3\left(x+1\right)-y=6-2y\\2x-y=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x+3-y=6-2y\\2x-y=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x+y=3\\2x-y=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6x+2y=6\\6x-3y=21\end{cases}}\)
\(\Leftrightarrow6x+2y-6x+3y=6-21\)
\(\Leftrightarrow5y=-15\Leftrightarrow y=-3\)
\(\Rightarrow x=\frac{7-3}{2}=2\)
\(\hept{\begin{cases}\sqrt{2}x+\left(\sqrt{2}+1\right)y=3\\x+\sqrt{2}y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{2}x+\sqrt{2}y+y=3\\\sqrt{2}x+y=2\sqrt{2}\end{cases}}\)
\(\Leftrightarrow\sqrt{2}x+\sqrt{2y}+y-\sqrt{2}x-y=3-2\sqrt{2}\)
\(\Leftrightarrow\sqrt{2}y=3-2\sqrt{2}\)
\(\Rightarrow y=\frac{3-2\sqrt{2}}{\sqrt{2}}=\frac{3}{\sqrt{2}}-2\)( em ko biết rút gọn sao :vv)
\(\Rightarrow x+\sqrt{2}\left(\frac{3}{\sqrt{2}}-2\right)=2\)
\(\Leftrightarrow x+3-2\sqrt{2}=2\)
\(\Leftrightarrow x=2\sqrt{2}-1\)
\(\hept{\begin{cases}x^3+x+2=2y\left(1\right)\\3\left(x^2+x\right)=y^3-y\left(2\right)\end{cases}\Rightarrow x^3+x+2+3\left(x^2+x\right)=2y+y^3-y}\)
\(\Leftrightarrow x^3+3x^2+4x+2=y^3+y\Leftrightarrow\left(x+1\right)^3+\left(x+1\right)=y^3+y\)
\(\Leftrightarrow\left(x+1\right)^3-y^3+\left(x+1-y\right)=0\)
\(\Leftrightarrow\left(x+1-y\right)\left[\left(x+1\right)^2+\left(x+1\right)y+y^2+1\right]=0\)
\(\Leftrightarrow y=x+1\)thay vào (1):
\(x^3+x+2=2\left(x+1\right)\Leftrightarrow x^3-x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
Bạn tự tìm nốt nhé
\(8x^3+2xy^2=y^6+y^4\Leftrightarrow\left(\frac{2x}{y}\right)^3+\frac{2x}{y}=y^3+y\)(chia cả 2 vế cho y3)
\(\Rightarrow\frac{2x}{y}=y\)(giống ý trước)
\(\Rightarrow y^2=2x\)thay vào pt(2)
\(\sqrt{x+2}+\sqrt{2x+5}=5\Leftrightarrow\sqrt{x+2}-2+\sqrt{2x+5}-3=0\)
\(\Leftrightarrow\frac{x+2-4}{\sqrt{x+2}+2}+\frac{2x+5-9}{\sqrt{2x+5}+3}=0\)
\(\Leftrightarrow\left(x-2\right)\left[\frac{1}{\sqrt{x+2}+2}+\frac{2}{\sqrt{2x+5}+3}\right]=0\Leftrightarrow x=2\Rightarrow y=\pm2\)