K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2021

Giả sử tam giác ABC vuông tại A và đường cao AH chia tam giác thành 2 phần có diện tích là \(54cm^2\) và \(96cm^2\).

Giả sử \(S_{AHB}=54cm^2,S_{AHC}=96cm^2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2}.AH.HB=54\\\dfrac{1}{2}.AH.HC=96\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AH.HB=108\\AH.HC=192\end{matrix}\right.\)

\(\Rightarrow AH^2.HB.HC=20736\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AH^2=HB.HC\)

\(\Rightarrow AH^2.HB.HC=AH^2.AH^2=AH^4=20736\Rightarrow AH=12\left(cm\right)\)

\(\Rightarrow\left\{{}\begin{matrix}HB=\dfrac{108}{12}=9\\HC=\dfrac{192}{12}=16\end{matrix}\right.\Rightarrow BC=HB+HC=9+16=25\left(cm\right)\)

 

9 tháng 9 2020

A C B H

có S AHB = AH.HB/2 = 54 (gt) => AH.HB = 108

S AHC = AH.HC/2 = 96 (gt) => AH.HC = 192

=> AH^2.HB.HC = 108.192 = 20736                                                                 (1)

tg ABC có ^A = 90 (gt) ; AH _|_ BC => AH^2 = HB.HC (đl)

=> AH^4 = AH^2.HB.HC    và (1)

=> AH^4 = 20736

=> AH = 12 do AH > 0

có AH.HB = 108 => HB = 9 

AH.HC = 192 => HC = 16

=> HB + HC = 9 + 16 = 25

Gọi độ dài hình chiếu thứ nhất là x

=>Độ dài hình chiếu thứ 2 là x+14

Theo đề, ta có: x^2+14x=24^2=576

=>x^2+14x-576=0

=>x=18

=>Độ dai cạnh huyền là 18+18+14=50cm

\(a=\sqrt{18\cdot50}=30\left(cm\right)\)

\(b=\sqrt{32\cdot50}=40\left(cm\right)\)

S=1/2*30*40=15*40=600cm2

NV
9 tháng 1 2023

Gọi độ dài đoạn thẳng ngắn hơn được chia trên cạnh huyền là x (cm) với x>0

\(\Rightarrow\) Độ dài đoạn còn lại là \(x+14\)

Áp dụng hệ thức lượng trong tam giác vuông:

\(24^2=x\left(x+14\right)\)

\(\Leftrightarrow x^2+14x-576=0\Rightarrow\left[{}\begin{matrix}x=18\\x=-32\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\) Độ dài cạnh huyền là: \(18+\left(18+14\right)=50\left(cm\right)\)

Diện tích tam giác: \(S=\dfrac{1}{2}.24.50=600\left(cm^2\right)\)

9 tháng 9 2016

Bài 1:

3 4 x y z

Áp dụng đl pytago ta có:

\(\left(y+z\right)^2=3^2+4^2=9+16=25\)

=> y + z = 5

Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:

\(3^2=y\left(y+z\right)=5y\)

=>\(y=\frac{3^2}{5}=1,8\)

Có: y + z =5

=>z=5-y=5-1,8=3,2

Áp dụng hên thức liên quan tới đường cao:

\(x^2=y\cdot z=1,8\cdot3,2=\frac{144}{25}\)

=>\(x=\frac{12}{5}\)

2 tháng 9 2019

Bài 2:

B A C H 1cm 2cm x y

Ta có: △ABC vuông tại A và có đg cao AH

AB2 = BH.BC ( hệ thức lượng )

⇒ x2 = 1 . 3

⇒ x = \(\sqrt{1.3}=\sqrt{3}cm\)

AC2 = CH.BC

⇒ y2 = 2 . 3

⇒ y = \(\sqrt{6}\) cm

21 tháng 4 2017

Giả sử tam giác ABC có góc (BAC) = 90 ° , AH ⊥ BC, BC = 5, AH = 2 và BH < CH

Ta có: BH + CH = 5     (1)

Theo hệ thức liên hệ giữa đường cao và cạnh huyền trong tam giác, ta có:

BH.CH = A H 2 = 2 2  = 4    (2)

Từ (1) và (2) suy ra: BH = 1 và CH = 4

Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:

A B 2  = BH.BC = 1.5 = 5

Suy ra: AB = 5

17 tháng 7 2016

Goi 2 canh goc vuong la b va c (b > c) 
Ap dung he thuc luong va dinh ly Pythagore ta co he pt : 
{ b.c = 5.2 = 10 (1) 
{ b^2 + c^2 = 5^2 = 25 (2) 
(1) ---> 2bc = 20 (3) 
(2) + (3) ---> (b+c)^2 = 45 ---> b+c = 3 can 5 (4) 
(2) - (3) ---> (b-c)^2 = 5 ---> b-c = can 5 (5) 
(4),(5) ---> b = 2 can 5 ; c = can 5 
Vay canh nho nhat cua tam giac vuong do la can 5.