K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2018

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Xét ΔABD và ΔEBD có:

BD chung

∠ABD = ∠EBD ( do BD ,là tia phân giác của góc ABC )

∠BAD = ∠BED = 90º

Suy ra: ΔABD = ΔEBD (cạnh huyền – góc nhọn) ⇒ BA = BE, DA = DE.

Do BA = BE nên B thuộc đường trung trực của AE.

Do DA = DE nên D thuộc đường trung trực của AE.

Do đó BD là đường trung trực của AE.

7 tháng 8 2017

b. Ta có AB = BE ⇒ B nằm trên đường trung trực của AE (0.5 điểm)

Do ∆ABD = ∆EBD nên AD = DE (hai cạnh tương ứng)

⇒ D nằm trên đường trung trực của AE

Vậy BD là đường trung trực của AE (0.5 điểm)

a: XétΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

Suy ra: BA=BE và DA=DE
hay BD là đường trung trực của AE

b: Ta có: AD=DE

mà DE<DC

nên AD<CD

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: BA=BE

DA=DE

=>BD là trung trực của AE

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: BA=BE

DA=DE

=>BD là trung trực của AE

c: Xét ΔBFC có

FE,CA là đường cao

FE cắt CA tại D

=>D là trực tâm

=>BD vuông góc FC

1 tháng 5 2022

lag a ban 

1 tháng 5 2022

ko pk dùng hiệu ứng á

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có

BE=BA

góc EBF chung

=>ΔBEF=ΔBAC

=>BF=BC

c: ΔBFC can tai B

mà BD là phân giác

nên BD là trung tuyến

10 tháng 8 2015

Bài này không khó, cần thì mình giải cho bạn nhưng mà phần b bạn sai đề 

11 tháng 2 2020

BAEDFC

a) Ta xét t/g ABD vuông tại a và kẻ DE vuông góc với BC có:

=>BD sẽ là cạnh chung 

=>ADB=BDE (BD là tia phân giác của ABE)

=>T/gABD=t/gEDB (cạnh huyền-góc nhọn)

=>AB=EB (2 cạnh tương ứng) 

=>B thuộc đường trung trực của AE

=>AD=ED (2 cạnh tương ứng)

=>D thuộc đường trung trực của AE

=>BD là đường trung trực của AE

b) Xét t/g AFD và t/gECD ta có:

=>FAD=CED=90o

=>AD=ED(t/gABD=t/gEDB)

=>ADF=EDC (2 góc đối đỉnh)

=>T/gDAF=t/gEDC (c.g.c)

=>DF=DC ( 2 cạnh tương ứng)

c)

Vì t/gADF vuông tại A nên ta có:

AD<FD (quan hệ giữa các cạnh góc đối diện nhau trong 1 t/g vuông)

=>FD=CD

=>AD<DC

=> (đpcm).