ΔABC nhọn cân tại A. Gọi D là điểm đối xứng của A qua BC
a, Tứ giác ABDC là hình j ? C/m
b, Gọi M là giao điểm của AD và BC. Hãy nêu các tính chất của tứ giác ABDC
M.n vẽ hình giúp em nữa ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
E là trung điểm của BC
F là trung điểm của AC
Do đó: EF là đường trung bình của ΔABC
Suy ra: EF//AD và EF=AD
Xét tứ giác ADEF có
EF//AD
EF=AD
Do đó: ADEF là hình bình hành
mà \(\widehat{FAD}=90^0\)
nên ADEF là hình chữ nhật
mà AD=AF
nên ADEF là hình vuông
a: Xét tứ giác BDCN có
M là trung điểm của BC
M là trung điểm của DN
Do đó: BDCN là hình bình hành
b: Xét tứ giác ANDB có
DB//AN
DB=AN
Do đó: ANDB là hình bình hành
mà \(\widehat{NAB}=90^0\)
nên ANDB là hình chữ nhật
Suy ra: AD=BN
a)
Vì D đối xứng N qua M (gt)
=> M là trung điểm của DM (đn)
Xét tứ giác BDCN có
M là trung điểm BC (gt)
M là trung điểm DM (cmt)
=> Tứ giác BDCN là hbh (dhnb hbh)
b)
Vì BDCN là hbh( cmt)
=> BD//NC
=> BD//AN (1) và BD=NC
mà NC=AN (N là trung điểm AC)
=> BD=NC (bắc cầu) (2)
Mà BAC=90 (gt) (3)
Từ (1) và (2), (3)=> BDNA hcn (dhnb hcn)
=> AD=BN (t/c đường chéo hcn)
Xét tam giác ACE có
N là trung điểm AC (gt)
FN//EC (BN//DC)
=> F là trung điểm của AE ( đtb)
mà N là trung điểm của AC (gt)
=> FN là đtb của tam giác AEC ( đn)
=> FN= 1/2 EC (1)
Xét tam giác FNM=tam giác EMD (cgc)
=> DE=FN ( 2 góc t/ư)(2)
Từ (1) và (2) => DE=1/2 EC ( bc)
BẠN TỰ VẼ HÌNH NHÉ MÌNH GIẢI THÔI NHA ^^
Giải
a) Xét tam giác ODE, có:
IK là đường trung bình(I t/điểm OD và K trung điểm OE)
=>IK // DE
Vậy:IKED là hình thang
b) Ta có IAKO là hcn (A=AIO=AKO=90 độ)
=>AK=IO và AK // IO.
Mà D,I,O thẳng hàng và DI=IO (D đxứng O qua I)
=>AK//DI và AK=DI
=>AKDI là hbh.
c)Ta có tam giác ABC có góc A=90 độ và Góc C=30 độ
=>góc B=60 độ
Và tam giác ABC vuông ở A và AM là đường trung tuyến
=> AM =1/2 BC =>AM=BM
=>Tam giác ABM cân ở M. Và Góc B= 60độ (cmt)
=> Tam giác ABM đều => AB=AM=BM
Vậy chu vi tam giác ABC= 3 x 7=21 (cm)
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)
Do đó: ADME là hình chữ nhật
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét tứ giác CMDE có
DM//CE
DM=CE
Do đó: CMDE là hình bình hành
b: Xét tứ giác AMCF có
E là trung điểm của AC
E là trung điểm của MF
Do đó: AMCF là hình bình hành
mà MA=MC
nên AMCF là hình thoi
Bạn tự vẽ hình nha:
a)Xét tứ giác AIHK, có:
góc A=90 độ(gt)
góc AIH =90 độ( D,H đx qua AB)
góc AKH=90 độ(H,E đx qua AC)
=> AIHK là hình chữ nhật
b)Vì D,H đx qua AB nên AB là đường trung trực của DH
=> AD=AH (1)
Vì H,E đx qua AC nên AC là đường trung trực của HE
=> AH=AE(2)
Từ (1) và (2) => AD=AE(*)
Tam giác ADH cân tại A (AH=AD) có AB là đtt nên AB cũng là đường phân giác, đường cao, đường trung tuyến
=> góc DAH=\(2.A_2\)
Tam giác AHE cân tại A (AH=AE) có AC là đtt nên AC cũng là đường phân giác, đường cao, đường trung tuyến
=> góc HAE=\(2.A_3\)
Ta có: góc DAH +góc HAE=\(2.A_2+2.A_3=2\left(A_2+A_3\right)=2.90\text{đ}\text{ộ}=180\text{đ}\text{ộ}\)
hay góc DAE=180 độ => 3 điểm D,A,E thẳng hàng (**)
Từ (*) và (**) => D,E đx qua A (đpcm)
c) Xét tam giác AIH và tam giác AKH, có:
góc AIH= góc AKH=90 độ
AH chung
AI=HK(AIHK là hcn)
=> tam giác AIH=tam giác AKH(ch_cgv)(3)
Xét tam giác ADI và tam giác AHI, có:
\(A_1=A_2\)(AB là p/g của góc DAH)
AI là cạnh chung
góc DIA= góc HIA=90 độ
=> tam giác ADI = tam giác AHI(cgv-gnk)(4)
Chứng minh tương tự, ta được : tam giác AEK= tam giác AHK(cgv-gnk)(5)
Từ (3), (4) và (5) => tam giác AIH=AKH=AKE=AID
Ta có :
\(S_{AIHK}=AI.AH=s\)
=> \(\frac{S_{AIHK}}{2}=S_{AIH}=\frac{s}{2}\)
=> \(S_{DHE}=S_{AIH}+S_{AKH}+S_{AKE}+S_{AID}=4.S_{AIH}\)
\(=4.\frac{s}{2}=2.s\)
Vậy: diện tích \(S_{DHE}=2.s\)
Mình đã làm hưng câu c) khá dài dòng, mình nghĩ rằng nên chứng minh theo cách khác ngắn gọn hơn, bài giải câu c) là dành cho trường hợp không biết làm sao chứng minh tam giác theo cách dài dòng nên bạn nào có cách giải câu c) hay hơn không? mình nghĩ là có các bạn cùng thảo luận nha!
Chúc bạn học thật giỏi nha!!!!!!!!
a: Xét tứ giác ABDC có
O là trung điểm của BC
O là trung điểm của AD
Do đó: ABDC là hình bình hành
mà AB=AC
nên ABDC là hình thoi
tại sao O lạ là trung điểm của BC và AD vậy ạ