cho hai điện trở R1=20 ôm,R2=40 mắc nối tiếp với nhau vào nguồn điện có hiệu điện thế không đổi 8V A) mặc thêm R3 song song với R1.Lúc này cường độ dòng điện chạy qua mạch chính gấp 3 lần cường độ dòng điện qua R3.Tính R3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điện trở tương đương của đoạn mạch là:
\(R_{tđ}=\dfrac{R_1.R_2}{R_1+R_2}=\dfrac{30.60}{30+60}=20\left(\Omega\right)\)
Do mắc song song nên \(U=U_1=U_2=30V\)
Cường độ dòng điện chạy qua mạch chính và mỗi mạch rẽ:
\(\left\{{}\begin{matrix}I=\dfrac{U}{R_{tđ}}=\dfrac{30}{20}=1,5\left(A\right)\\I_1=\dfrac{U_1}{R_1}=\dfrac{30}{30}=1\left(A\right)\\I_2=\dfrac{U_2}{R_2}=\dfrac{30}{60}=0,5\left(A\right)\end{matrix}\right.\)
Điện trở tương đương lúc này là:
\(R_{tđ}=R_{12}+R_3=20+40=60\left(\Omega\right)\)
Do mắc nối tiếp nên \(I=I_{12}=I_3=1,5\left(A\right)\)
Nhiệt năng đoạn mạch tiêu thụ trong 30ph:
\(A=P.t=I^2.R.t=1,5^2.60.30.60=243000\left(J\right)\)
Nhiệt lượng tỏa ra của R3 trong 30ph:
\(Q_{tỏa_3}=A_3=I_3^2.R_3.t=1,5^2.40.30.60=162000\left(J\right)\)
R1 nt R2 nt R3
\(=>I1=I2=I3=\dfrac{U}{R1+R2+R3}=\dfrac{U}{3R}\left(A\right)\)
R1//R2//R3
\(=>U1=U2=U3=U\) mà các điện trở R1=R2=R3=R
\(=>\dfrac{1}{Rtd}=\dfrac{1}{R}+\dfrac{1}{R}+\dfrac{1}{R}=>\dfrac{1}{Rtd}=\dfrac{3}{R}=>Rtd=\dfrac{R}{3}\Omega\)
\(=>I'=I1=I2=I3=\dfrac{U}{Rtd}=\dfrac{3U}{R}A\)
a) Vì R1//R2 nên: \(\frac{1}{R12}\)=\(\frac{1}{R1}\)+\(\frac{1}{R2}\)= 1/6+1/12= 1/4 => R12= 4(\(\Omega\))
Vì R3 nt R12 nên: Rtđ= R3 + R12 = 16 + 4 = 20 (\(\Omega\))
b) CĐDĐ qua mạch chính là: I= U/Rtđ= 30/20= 1,5(A)
TRong mạch song2 : \(\frac{I1}{I2}\)= \(\frac{R2}{R1}\)= \(\frac{12}{6}\)=2 \(\Leftrightarrow\) I1=2I2
Vì R3 nt R12 nên: I = I12=I3 = 1,5(A)
Mà: R12= R1+R2=> R12= 2R2 + R2 = 3R2
3R2 = 1,5A => R2= 0,5(A)
\(\Leftrightarrow\)R1= 2R2= 0,5 . 2= 1(A)
\(R_{tđ}=R_2+R_{13}=\dfrac{R_1.R_3}{R_1+R_3}+R_2\)
\(\Rightarrow3R_3=\dfrac{20.R_3}{20+R_3}+40\)
\(\Rightarrow3R_3=\dfrac{20R_3+20.40+40R_3}{20+R_3}\)
\(\Rightarrow60R_3+3R_3^2=20R_3+800+40R_3\)
\(\Rightarrow\left(3R_3-40\right)\left(3R_3+20\right)=0\Rightarrow R_3=\dfrac{40}{3}\left(\Omega\right)\)