C=(1/10-1)(1/11-1)(1/12-1)..............(1/99-1)(1/100-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C = 1 / 10 + ( 1 / 11 + 1 / 12 + ... + 1 / 99 + 1 / 100 )
<=> 1 / 10 + ( 1 / 11 + 1 / 12 + ... + 1 / 99 + 1 / 100 ) > 1 / 10 + ( 1 / 100 + 1 / 100 + ... + 1 / 100 )
<=> 1/ 10 + 90 / 100 = 1
Vậy C > 1 (đpcm)
Ta có :
Cần 30 số hạng đầu đã lớn hơn 1.
1/10+1/11+…+1/19 > 1/20+1/20+…+1/20 = 10/20 = 1/2
1/20+1/21+…+1/29 > 1/30+1/30+…+1/30 = 10/30 = 1/3
1/30+1/31+…+1/39 > 1/40+1/40+…+1/40 = 10/40 = 1/4
=> 1/10+1/11+…+1/39 > 1/2+1/3+1/4 = 13/12 > 1
Vậy :C>1
a, Ta có: \(A=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{50}=\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}\right)\)
Nhận xét: \(\frac{1}{11}+\frac{1}{12}+....+\frac{1}{30}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{20}{30}=\frac{2}{3}\)
\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{20}{60}=\frac{1}{3}\)
\(\Rightarrow A>\frac{2}{3}+\frac{1}{3}=1>\frac{1}{2}\)
Vậy A > 1/2
b, Ta có: \(\frac{1}{50}>\frac{1}{100};\frac{1}{51}>\frac{1}{100};........;\frac{1}{99}>\frac{1}{100}\)
\(\Rightarrow B>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\)
Vậy B > 1/2
c, Ta có: \(C=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)\)
Nhận xét: \(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{90}{100}=\frac{9}{10}\)
\(\Rightarrow C>\frac{1}{10}+\frac{9}{10}=\frac{10}{10}=1\)
Vậy C > 1
\(S=\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{99.100}\)
\(\Rightarrow S=\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow S=\frac{1}{10}-\frac{1}{100}\)
\(\Rightarrow S=\frac{99}{100}\)
\(S=\frac{1}{10.11}+\frac{1}{11.12}+....+\frac{1}{99.100}\)
\(=\frac{11-10}{10.11}+\frac{12-11}{11.12}+...+\frac{100-99}{99.100}\)
\(=\frac{11}{10.11}-\frac{10}{10.11}+\frac{12}{11.12}-\frac{11}{11.12}+....+\frac{100}{99.100}-\frac{99}{99.100}\)
\(=\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+....+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{10}-\frac{1}{100}=\frac{9}{100}\)
1+(-2)+3+(-4)+5+(-6)+7+(-8)+9+(-10)+11+(-12)
=(1+3+5+7+9+11)+[(-2)+(-4)+(-6)+(-8)+(-10)+(-12)]
= 36+-42
=-6
(-1)+2+(-3)+4+(-5)+6+(-7)+8+(-9)+10+(-11)+12
=[(-1)+(-3)+(-5)+(-7)+(-9)+(-11)]+(2+4+6+8+10+12)
=(-36)+42
=6
\(C=-\dfrac{9}{10}\left(-\dfrac{10}{11}\right)\left(-\dfrac{11}{12}\right)...\left(-\dfrac{98}{99}\right)\left(-\dfrac{99}{100}\right)\)
Ta thấy C có \(\left(100-10\right):2+1=46\) thừa số nên số dấu âm là chẵn
Vậy \(C=\dfrac{9}{10}\cdot\dfrac{10}{11}\cdot\dfrac{11}{12}\cdot...\cdot\dfrac{99}{100}=\dfrac{9}{100}\)