Cắt mặt xung quanh của một hình nón tròn xoay dọc theo một đường sinh rồi trải ra trên mặt phẳng ta được một nửa hình tròn bán kính R. Hỏi hình nón đó có bán kính r của đường tròn đáy và góc ở đỉnh của hình nón bằng bao nhiêu ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dựng mặt phẳng (Q) chứa đường cao SO của hình chóp
Ta được thiết diện là tam giác SAB như hình vẽ
\(\Rightarrow OI=h;OA=OB=R;\widehat{ASO}=\widehat{BSO=\alpha}\)
(P) cắt (Q) qua giao tuyến MN, MN cắt SO tại điểm I \(\Rightarrow\) IM=IN=r (bán kính đường tròn (C) )
Tam giác SIN đồng dạng với tam giác SOB
\(\Rightarrow\frac{SI}{SO}=\frac{IN}{OB}\Leftrightarrow IN=\frac{SI.OB}{SO}=\frac{\left(SO-MO\right).OB}{SO}=\frac{\left(OB.cot\widehat{OSB}-MO\right).OB}{OB.cot\widehat{OSB}}\\ \Rightarrow r=\frac{Rcot\alpha-h}{Rcot\alpha}=1-\frac{h}{Rcot\alpha}\)
Chọn đáp án A
Phương pháp
Chu vi đường tròn đáy của hình nón chính là độ dài cung tròn của phần hình học được trải ra có bán kính 3cm.
Cách giải
Chu vi đường tròn đáy hình nón là:
Cắt mặt xung quanh của một hình nón tròn xoay dọc theo một đường sinh rồi trải ra trên mặt phẳng ta được một nửa hình tròn bán kính R ⇒ đường sinh có độ dài bằng R và chu vi đường tròn đáy bằng nửa chu vi đường tròn bán kính R