chứng minh rằng trong n số nguyên bất kì bao giờ cũng chọn được 1 hoặc 1 vài số mà tổng của các số vừa chọn chia hết cho n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo Nguyên lí Đi-rich-lê thì trong 12 số tự nhiên bất kì bao giờ ta cũng chọn ra được 2 số mà hiệu của chúng chia hết cho 11 nên =>trong 12 số tự nhiên bất kì bao giờ ta cũng chọn ra được 2 số mà hiệu của chúng chia hết cho 11
Đem 12 số tự nhiên trên chia cho 11 thì nhận đc 12 số dư. Mà 1 số tự nhiên khi chia cho 11 sẽ nhận đc 1 trong 11 khả năng dư[0 đến 10].
Ta có 12:11=1[dư 1]
Theo nguyên lí điricle sẽ tồn tại ít nhất
1+1=2[ số dư bằng nhau]
Nghĩa là tồn tại ít nhất 2 số tự nhiên khi chia 11 có cùng số dư. Suy ra hiệu 2 số đó chia hết cho 11
Vậy bài toán đã được chứng minh
Đem 12 stn cha cho 11 thì nhận đc 12 số dư .Mà 1 stn khi chia cho 11 se nhận đc trog 11 khả năng dư [ 0 đến 10 ]
ta có :
12/11=1 (dư 1)
Theo nguyên lí dircle sẽ tồn tại ít nhất 1+1=2 (số dư = nhau )
Nghĩa là sẽ có 2 stn khi chia cho 11 có cùng số dư
=> Hiệu 2 số đó chia hết cho 11
Chả bjt có đúng k .Nhưng mik nghĩ là 98%
Gọi r1, r2, ... r52 là số dư khi chia mỗi số đó cho 100
mỗi ri (i = 1, 2, ..., 52) nhận giá trị từ các số 0, 1, 2, ..., 99 (có 100 số)
* nếu có 2 số ri bằng nhau thì như trên 2 số tương ứng có hiệu chia hết cho 100
* nếu 52 số ri đôi một khác nhau
ta thấy từ 1 đến 99 có 49 cặp số có tổng là 100 đó là (1, 99) ; (2, 98) .. (49,51)
theo nguyên lí Dirichlet trong 50 số chọn ra có ít nhất 2 số cùng 1 cặp
và như vậy cùng với 2 số 0 và 50 ta chọn 52 số ri khác nhau => có ít nhất 2 số ri, rj (i # j) thuộc cùng 1 cặp, giả sử là r1 và r2 có r1 + r2 = 100
a = 100m + r1 ; b = 100n + r2
=> a+b = 100(m+n) + r1 + r2 = 100(m+n) + 100 chia hết cho 100
Nếu có đúng một số chia hết cho 100, 51 số còn lại không chia hết cho 100
Xét 50 cặp số dư : (1;99);(2;98);(3;97);...;(50;50)
Theo nguyên lí Dirichlet, tồn tại hai số mà số dư của chúng khi chia cho 50 là một trong 50 cặp số trên.
Giả sử số dư của hai số đó rơi vào cặp (a;b) (với a+b=100)
- Nếu cả hai số cùng chia 100 dư a (hoặc dư b) thì hiệu của chúng chia hết cho 100
- Nếu hai số, một chia 100 dư a, một số chia 100 dư b thì tổng của chúng chia hết cho 100
Bài toán được chứng minh
Nếu cả 52 số đều không chia hết cho 100. Tương tự như trên
Ta có đpcm
a) Khi chia 1 số tự nhiên cho 2, số dư có thể là 0 hoặc 1
=> Khi chia 3 số tự nhiên bất kì cho 2 số dư bằng một trong hai số 0; 1.
=> 2 trong 3 số đó có cùng số dư => Hiệu của 2 số chia hết cho 2
b) Khi chia 1 số tự nhiên cho 5, số dư có thể là 0; 1; 2; 3; 4
=> Khi chia 6 số tự nhiên bất kì cho 5, số dư bằng1 trong 5 số 0; 1; 2; 3; 4.
=> Chắc chắn có 2 trong 6 số đó chia cho 5 có cùng số dư
=> Hiệu của chúng chia hết cho 5
Vậy...