Bài 1 : Cho tam giác cân ABC tại A. Gọi M , N , P theo thứ tự là trung điểm của AB , AC , BC . Cho Q là điểm đối xứng của P qua N. Chứng minh : a . MN // BC b . Tứ giác ANPB là hình thang . d . BMNC là hình thang cân . f . APCQ là hình chữ nhật c . PMAQ là hình thang . e . ABPQ là hình bình hành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tâm giác cân ABC ( AB = AC ) gọi M,N,P theo thứ tự là trung điểm của AB , AC, BC cho Q là điểm đối xứng của P qua N chứng minh a,PMAQ là hình thang b,BMNC là hình thang cân c,ABPQ là hình bình hành đ,AMPQ là hình thoi e,APCQ là hình chữ nhật Giúp em với ạ
a: Xét ΔABC có
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
Do đó: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
a, Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC
Do đó MN//BC hay BMNC là hình thang
b: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC và MN=BC/2
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà CM=BN
nên BMNC là hình thang cân
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC và MN=BC/2
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{MBC}=\widehat{NCB}\)
nên BMNC là hình thang cân
b: Xét ΔABC có
H là trung điểm của BC
N là trung điểm của AC
DO đó: HN là đường trung bình
=>HN//AB và HN=AB/2
=>HN=AM và HN=AM
Xét tứ giác AMHN có
HN//AM
HN=AM
Do đó: AMHN là hình bình hành
mà AM=AN
nên AMHN là hình thoi
c: Ta có: AMHN là hình thoi
nên Hai đường chéo AH và MN cắt nhau tại trung điểm của mỗi đường
=>O là trung điểm của AH
Xét tứ giác ABHK có
HK//AB
HK=AB
DO đó: ABHK là hình bình hành
Suy ra: Hai đường chéo AH và BK cắt nhau tại trung điểm của mỗi đường
mà O là trung điểm của AH
nên O là trung điểm của BK
a) Ta có P,N là trung điểm của AC và BC nên PN// AB và PN =AM=BM=AB/2
=> PN // AM
=> PQ // AM
=> PMAQ là hình thang
b) hình nào là hình thang cân?
c) Ta có PQ// AB và PQ=AB= 2AM = 2PN
=> ABPQ là hình bình hành
d) TA có AM // PN và AM = PN
=> AMPN là hình bình hành
Lại có AB=AC
=> AM = AN
=> AMPN là hình thoi
e) Do ABC cân tại A có AP là đường trung tuyến
=> AP đồng thời là đường cao
=> góc APC = 90 độ
Xét tứ giác APCQ có 2 đường chéo AC và PQ cắt nhau tại trung điểm N mỗi đương
=> APCQ là hình bình hành
Có APC = 90 độ
=> APCQ là hình chữ nhật
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà BN=CM
nên BMNC là hình thang cân
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC