1. Cho \(a\ge0;b\ge0.\) Chứng minh: \(\left(a+1\right)\sqrt{b}+\left(b+1\right)\sqrt{a}\le\left(a+1\right)\left(b+1\right)\)
2. Cho \(a\ge2;b\ge\frac{1}{2}\)Chứng minh: \(a\sqrt{2b-1}+2b\sqrt{2a-4}\le2ab\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức AM - GM: \(1+a^3+b^3\ge3\sqrt[3]{1.a^3.b^3}=3ab\).
Ta có :
\(a-\sqrt{a}+\frac{1}{4}=\left(\sqrt{a}-\frac{1}{2}\right)^2\ge0\forall a\ge0\Rightarrow a+\frac{1}{4}\ge\sqrt{a}\)
\(b-\sqrt{b}+\frac{1}{4}=\left(\sqrt{b}-\frac{1}{2}\right)^2\ge0\forall b\ge0\Rightarrow b+\frac{1}{4}\ge\sqrt{b}\)
\(\Rightarrow a+\frac{1}{4}+b+\frac{1}{4}\ge\sqrt{a}+\sqrt{b}\)
\(\Rightarrow a+b+\frac{1}{2}\ge\sqrt{a}+\sqrt{b}\)(đpcm)
\(BDT\Leftrightarrow\frac{1}{1+a^2}+\frac{1}{1+b^2}-\frac{2}{1+ab}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\) đúng
Vì \(a,b,c\ge0\)Nên ta nhân a+b+c vào hai vế của bất đẳng thức :
Ta được:\(\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\ge9\)
\(\Leftrightarrow\frac{a}{a}+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}+\frac{b}{b}+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}+\frac{c}{c}\ge9\)
\(\Leftrightarrow3+\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)-9\ge0\)(2)
Lại có \(ab\ge0\)
\(\Rightarrow\frac{\left(a-b\right)^2}{ab}\ge0\Leftrightarrow\frac{a}{b}+\frac{b}{a}\ge2\)
Tương tự:\(\frac{c}{a}+\frac{a}{c}\ge2;\frac{b}{c}+\frac{c}{b}\ge2\)(1)
Từ (1),(2),(3) \(\Rightarrow3+2+2+2-9\ge0\)(luôn đúng)
Vậy..........................................................................................
Dấu "=" <=> a=b=c
Nếu như tớ làm đúng thì bạn k cho tớ với nhé!!!!!!!!!!!!!!!!!!
Thanks bạn trước!
Áp dụng bất đẳng thức Cauchy - Schwarz dạng engel , ta có
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}\)
Đẳng thức xảy ra <=> a = b = c
Áp dụng BĐT Cô - Si dạng Engel , ta có :
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ≥ \(\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{a+b+c}\)
Đẳng thức xảy ra khi và chỉ khi : a = b = c
\(bpt\Leftrightarrow\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)
C-S: \(\left\{{}\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\end{matrix}\right.\)
Nhân theo vế suy ra đpcm
p/s: @Phùng Khánh Linh. Minh từng nói học toán phải từ gốc đến ngọn. Thực tế lp 8 còn ko biết đến C-S Engel là gì. Giải nên thiết thực với thực tế. T nói thế thôi ( góp ý hết sức nhẹ nhàng và éo tình cảm)
Ta có BĐT : \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}=4\)
Sử dụng BĐT Cauchy schwarz dưới dạng engel ta có :
\(\dfrac{\left(a+\dfrac{1}{b}\right)^2}{1}+\dfrac{\left(b+\dfrac{1}{a}\right)^2}{1}\ge\dfrac{\left(a+b+\dfrac{1}{a}+\dfrac{1}{b}\right)^2}{2}=\dfrac{\left(1+4\right)^2}{2}=\dfrac{25}{2}\)
Vậy BĐT đã được chứng minh . Dấu \("="\) xảy ra khi \(a=b=\dfrac{1}{2}\)
Biến đổi tương đương:
\(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\) (1)
\(\Leftrightarrow\dfrac{a+b}{2}\ge\dfrac{a+2\sqrt{ab}+b}{4}\)
\(\Leftrightarrow2a+2b-a-2\sqrt{ab}-b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) luôn đúng
=> (1) đúng
Dấu "=" xảy ra khi a = b