Cho hai tam giác ABC và ABD có AB = BC = CA = 3cm, AD = BD = 2cm (C và D nằm khác phía đối với AB). Chứng minh rằng: ∠(CAD) =∠(CBD)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
19 tháng 11 2017
Xét tam giác ABC và tam giác ABD, có:
AC=CD ( gt )
CD là cạnh chung
AD=BD ( gt )
Vậy CAD=CBD (c.c.c )
5 tháng 11 2016
xét 2 tam giác ACD và BCD có AD=BD=2cm, AC=BC=3cm, CD chung
=> tg ACD= tg BCD (c.c.c) =>góc CAD= góc CBD
HN
5 tháng 3 2022
a,Xét tam giácCAD và tam giác CBD có:
CD:cạnh chumg
CA=CB
AD=BD
----->Tam giác CAD=tam giác CBD(c.c.c)
Vậy....
b,Có tam giác CAD=tam giác CBD(cmt)
-->Góc CAD=góc CBD(cặp góc tương ứng )
Vậy...
Xét ΔCAD và ΔCBD, ta có:
AC = BC (= 3 cm)
AD = BD (= 2 cm)
CD cạnh chung
Suy ra: ΔCAD= ΔCBD(c.c.c)
Vậy ∠(CAD) =∠(CBD) ̂(hai góc tương ứng)