Phát biểu định lí về tổng ba góc của một tam giác, tính chất góc ngoài của tam giác.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Tổng ba góc của một tam giác bằng 180o
- Mỗi góc ngoài của một tam giác bằng tổng của hai góc trong không kề với nó.
1. Tổng ba góc của một tam giác
Định lí: Tổng ba góc của một tam giác bằng 1800
2. Góc ngoài của tam giác
Định nghĩa: Góc ngoài của tam giác là góc kề bù với một góc của tam giác.
ý 2 sai rồi
Tính chất. Góc ngoài của tam giác bằng tổng hai góc trong không kề với nó.
Bài làm
1. hai tam giác bằng nhau là hai tam giác có các góc tương ứng bằng nhau và các cạnh tương ứng bằng nhau.
2. tam giác ABC là tam giác đều(vẽ hình ,CM là ra)
3. trong 1 tam giác nếu bình phương 1 cạnh bằng tổng bình phương 2 cạnh còn lại thì tamm giác đó là tam giác vuông.
4. tổng ba góc của 1 tam giác = 180độ , góc ngoài của tam giác = tổng 2 góc trong ko kề vs nó
5. TH1: nếu 3 cạnh của tam giác này lần lượt = 3 cạnh của tam giác kia thì 2 tam giác đó = nhau (c.c.c)
TH2 : nếu 2 cạnh và 1 óc xen giữa của tam giác này = 2 cạnh và góc xen giữa của tam giác kia thì 2 tam giác đó = nhau( c.g.c)
TH3: Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau(g.c.g)
6.- Nếu hai cạnh góc vuông của tam giác vuông này lần lượt bằng hai cạnh của tam giác vuông kia thì hai tam giác vuông đó bằng nhau (theo trường hợp c.g.c)
- Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác vuông đó bằng nhau (g.c.g).
- Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau (g.c.g).
Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này bằng cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
hok tốt
b: Tính chất: góc ngoài của tam giác có số đo bằng tổng số đo hai góc trong không kề với nó
Các tính chất ở cá câu a ,b được suy ra từ định lí "Tổng ba góc của một tam giác bằng 180o".
Tính chất ở câu c được suy ra từ định lí "Trong một tam giác cân hai góc ở đáy bằng nhau".
Tính chất ở câu d được suy ra từ định lí: Nếu một tam giác có ba góc bằng nhau thì tam giác đo là tam giác cân.
Các tính chất ở các câu (a); (b) được suy ra từ định lí: “Tổng ba góc của một tam giác bằng nhau bằng 1800”.
Tính chất ở câu (c) được suy ra từ định lí: “Trong tam giác cân, hai góc ở đáy bằng nhau”.
Tính chất ở câu (d) được suy ra từ định lí: “Nếu một tam giác có hai góc bằng nhau thì tam giác đó là tam giác cân”.
Tham khảo :
* Chứng minh:
a)
Ta có:
Tổng ba góc của tam giác \(ABC\) bằng \(180^o\) nên \(\widehat A + \widehat B = {180^o} - \widehat C\)
Góc \(ACx\) là góc ngoài của tam giác \(ABC\) nên\(\widehat {ACx}= 180^o-\widehat C\)
Do đó: \(\widehat {ACx} = \widehat A + \widehat B\).
b) Tam giác \(ABC\) vuông tại \(A\)
\( \Rightarrow \widehat A = {90^o}\)
Áp dụng định lí tổng các góc của một tam giác vào\(\Delta ABC\) ta có:
\(\widehat A + \widehat B + \widehat C = {180^o}\)
\( \Rightarrow \widehat B + \widehat C = {180^o} - \widehat A = {180^o} - {90^o} = {90^o}\)
c) Giả sử có tam giác \(ABC\) đều
\( AB = AC =BC \)
\( ΔABC\) cân tại \(A\) và cân tại \( B\).
\( \Rightarrow \widehat A = \widehat B;\,\,\,\,\widehat A = \widehat C\) (tính chất tam giác cân)
\( \Rightarrow \widehat A = \widehat B = \widehat C\)
d) Giả sử\(\Delta ABC\) có\(\widehat A = \widehat B = \widehat C\)
Có\(\widehat A = \widehat B\Rightarrow \)\(\Delta ABC\) cân tại \(C\), do đó \(CA=CB\).
Có\(\widehat B = \widehat C\Rightarrow \) \(\Delta ABC\) cân tại \(A\) do đó \(AC=AB\)
\( AB = AC = BC ΔABC\) là tam giác đều.
- Tổng ba góc của một tam giác bằng 180o
- Mỗi góc ngoài của một tam giác bằng tổng của hai góc trong không kề với nó.