Cho tam giác DEF vuông tại (ED<EF),đường cao EI, biết EF=12cm, IF=9,6cm
a) Tính DE
b) Giaỉ tam giác IDE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\sin\widehat{F}=\dfrac{ED}{EF}=\sin60^0=\dfrac{\sqrt{3}}{2}\Leftrightarrow EF=4\cdot\dfrac{2}{\sqrt{3}}=\dfrac{8\sqrt{3}}{3}\left(cm\right)\\ DF=\sqrt{EF^2-DE^2}=\dfrac{4\sqrt{3}}{3}\left(cm\right)\left(pytago\right)\)
a: Xét ΔEDC vuông tại D và ΔEHC vuông tại H có
EC chung
góc DEC=góc HEC
=>ΔEDC=ΔEHC
b: Xét ΔCDK vuông tại D và ΔCHF vuông tại H có
CD=CH
góc DCK=góc HCF
=>ΔCDK=ΔCHF
=>CK=CF
=>ΔCKF cân tại C
a: Xét ΔEDC vuông tại D và ΔEHC vuông tại H có
EC chung
\(\widehat{DEC}=\widehat{HEC}\)
Do đó; ΔEDC=ΔEHC
b: Xét ΔDCK vuông tại D vàΔHCF vuông tại H có
CD=CH
\(\widehat{DCK}=\widehat{HCF}\)
Do đó; ΔDCK=ΔHCF
Suy ra: CK=CF
a, Xét Δ DCE và Δ HCE, có :
EC là cạnh chung
\(\widehat{CDE}=\widehat{CHE}=90^o\)
\(\widehat{DEC}=\widehat{HEC}\) (EC là tia phân giác \(\widehat{DEH}\))
=> Δ DCE = Δ HCE (g.c.g)
=> DC = HC
b, Xét Δ DCK và Δ HCF, có :
DC = HC (cmt)
\(\widehat{DCK}=\widehat{HCF}\) (đối đỉnh)
=> Δ DCK = Δ HCF ( ch - cgn)
=> CK = CF
=> Δ CKF cân tại C
a: DE=9cm