K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2019

SBGM = SCGM

18 tháng 4 2017

a) Tam giác AGP và PGB có chung đường cao hạ từ đỉnh G và AP = PB nên SAGP = SPGB

Tương tự, ta có: SBGM = SMGC và SCGN = SNGA.

Vì G là trọng tâm DABC Þ AG = 2GM.

Þ SBGM = 1 2 SABG Þ SBGM = SAGP = SPGB.

Chứng minh tương tự, ta suy ra được:

SAGP = SPGB = SBGM = SMGC = SCGN = SNGA

b) Sử dụng kết quả câu a) ta có diện tích mỗi tam giác bằng 1 6  SABC, từ đó suy ra ĐPCM.

17 tháng 5 2022

bài này khó lắm th ơi

17 tháng 5 2022

ko ai giải hết!!!!!!!!!!!!!!!!!!!!!!banh

11 tháng 1 2018

5 tháng 4 2021

bạn ơi, hình như không có căn cứ để làm thế thì phải

 

17 tháng 5 2022

vì tg ABC cân tại A
=> AM là đường phân giác 
=>góc BAG = góc CAG (t/c đường phân giác ) 
xét tam giác ABG và tam giác AGC có 
góc BAG = góc CAG (cmt) 
AG : chung 
AB = AC( gt ) 
=> tg AGB = tg AGC( C-G-C ) 

13 tháng 3 2022

a)Ta có: △ABC có 2 đường trung tuyến BI và CK giao nhau tại G

=> G là trọng tâm của tam giác ABC

=> AG là đường trung tuyến

Mà AG cắt BC tại M 

=> AM là đường trung tuyến

=> MB= MC

Xét tam giác ABC có K là TĐ AB ; G là TĐ của AD

=> KG // BD

Mà C thuộc KG

=> GC // BD.=> B1 = C1( 2 góc so le trong)

Xét tam giác BMC và tam giác CMG có

MB = MC; M= M2; B= C1

=> △BMC = △CMG (g . c . g) (1)

Từ (1)=> BD=GC (2 cạnh t/ứ)

Có CG + KG = CK

=>CG < CK

Mà BD = CG

=> BD < CK

3 tháng 2 2018

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao và AM cũng là phân giác

Xét ΔABG và ΔACG có 

AB=AC

\(\widehat{BAG}=\widehat{CAG}\)

AG chung

Do đó: ΔABG=ΔACG

b: Xét ΔBIC có 

M là trung điểm của BC

MG//IC

Do đó: G là trung điểm của BI

Xét ΔBIC có

M là trung điểm của BC

G là trung điểm của BI

Do đó: MG là đường trung bình

=>MG=1/2CI

1:

Xét ΔABC có 

BI là trung tuyến

CK là trung tuyến

BI cắt CK tại G

Do đó: G là trọng tâm của ΔABC

mà M là giao điểm của AG và BC

=>AG=2/3MA và M là trung điểm của BC

=>AG=2GM

=>GD=2GM

=>M là trung điểm của GD

Xét ΔMBD và ΔMCG có 

MB=MC

\(\widehat{BMD}=\widehat{CMG}\)

MD=MG

Do đó; ΔMBD=ΔMCG

2: Ta có: ΔMBD=ΔMCG

nên BD=CG

mà CG<CK

nên BD<CK