K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2017

a, x 2 − 2 ( m + 1 ) x + m 2 + m − 1 = 0 (1)

Với m = 0, phương trình (1) trở thành:

  x 2 − 2 x − 1 = 0 Δ ' = 2  ;  x 1 , 2 = 1 ± 2

Vậy với m = 2 thì nghiệm của phương trình (1) là  x 1 , 2 = 1 ± 2

b) Δ ' = m + 2

Phương trình (1) có hai nghiệm phân biệt  ⇔ m > − 2

Áp dụng hệ thức Vi-ét, ta có:  x 1 + x 2 = 2 ( m + 1 ) x 1 x 2 = m 2 + m − 1

Do đó:

     1 x 1 + 1 x 2 = 4 ⇔ x 1 + x 2 x 1 x 2 = 4 ⇔ 2 ( m + 1 ) m 2 + m − 1 = 4 ⇔ m 2 + m − 1 ≠ 0 m + 1 = 2 ( m 2 + m − 1 ) ⇔ m 2 + m − 1 ≠ 0 2 m 2 + m − 3 = 0 ⇔ m = 1 m = − 3 2

Kết hợp với điều kiện  ⇒ m ∈ 1 ; − 3 2  là các giá trị cần tìm.

Bài 1: 

a) Thay m=3 vào (1), ta được:

\(x^2-4x+3=0\)

a=1; b=-4; c=3

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Bài 2: 

a) Thay m=0 vào (2), ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

hay x=1

a: Khi m=1 thì (1) sẽ là:

x^2-4x-5=0

=>x=5 hoặc x=-1

a: Khi m=2 thì (1) sẽ là x^2+2x+1=0

=>x=-1

b:x1+x2=52

=>2m-2=52

=>2m=54

=>m=27

17 tháng 12 2021

a: Thay m=-3 vào (1), ta được:

\(x^2-2x-3=0\)

=>(x-3)(x+1)=0

hay x∈{3;-1}

a: Khi m=2 thì pt (1) trở thành:

\(x^2-4x+3=0\)

=>(x-1)(x-3)=0

=>x=1 hoặc x=3

13 tháng 1 2022

Còn phần b nữa mà bạn ơi

30 tháng 4 2022

a) thay m = 3 ta có pt:

x2 + 10x + 3 = 0 

<=> xét delta phẩy 

25 - 3 = 22 

\(\left[{}\begin{matrix}x1=-5+\sqrt{22}\\x2=-5-\sqrt{22}\end{matrix}\right.\)

vậy S={ \(-5+\sqrt{22}\);\(-5-\sqrt{22}\)}

b) xét delta phẩy 

(m+2)2 - m2 + 6

= 4m +10 

để phương trình có 2 nghiệm x1;x2 thì delta phẩy ≥ 0 

=> m ≥ \(\dfrac{-10}{4}\)

theo Vi-ét ta có:

\(\left\{{}\begin{matrix}x1+x2=-2m-4\\x1x2=m^2-6\end{matrix}\right.\)

theo bài ra ta có:

x12 + x22 = 16

<=> (x1+x2)2 - 2x1x2 = 16

=> 4m2 + 16m + 16 - 2m2 + 12 = 16

<=> 2m2 + 16m + 12 = 0 

<=> m2 + 8m + 6 = 0 

giải ra \(\left[{}\begin{matrix}m=-4+\sqrt{10}\\m=-4-\sqrt{10}\end{matrix}\right.\)

vậy m = \(-4+\sqrt{10}\) để pt có 2 nghiệm thỏa mãn hệ thức x12 + x22 = 16

( m = -4-\(\sqrt{10}\) loại)

a: Thay m=3 vào pt, ta được:

\(x^2-2\cdot\left(3-1\right)x+3^2-2\cdot3=0\)

\(\Leftrightarrow x^2-4x+3=0\)

=>(x-1)(x-3)=0

=>x=1 hoặc x=3

b: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\left(m^2-2m\right)\)

\(=\left(2m-2\right)^2-4\left(m^2-2m\right)\)

\(=4m^2-8m+4-4m^2+8m=4>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Thay x=-2 vào pt, ta được:

\(\left(-2\right)^2-2\cdot\left(-2\right)\cdot\left(m-1\right)+m^2-2m=0\)

\(\Leftrightarrow m^2-2m+4+4\left(m-1\right)=0\)

\(\Leftrightarrow m^2-2m+4+4m-4=0\)

=>m(m+2)=0

=>m=0 hoặc m=-2

Theo hệ thức Vi-et, ta được:

\(x_1+x_2=2\left(m-1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x_2-2=2\cdot\left(-1\right)=-2\\x_2-2=2\cdot\left(-3\right)=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x_2=0\\x_2=-4\end{matrix}\right.\)

c: \(x_1^2+x_2^2=4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(m^2-2m\right)=4\)

\(\Leftrightarrow4m^2-8m+4-2m^2+4m-4=0\)

\(\Leftrightarrow2m^2-4m=0\)

=>2m(m-2)=0

=>m=0 hoặc m=2

5 tháng 2 2022

em cảm ơn ạ