Cho hàm số bậc nhất y = f(x) = 3x + 1.
Cho x hai giá trị bất kì x1, x2, sao cho x1 < x2. Hãy chứng minh f(x1) < f(x2) rồi rút ra kết luận hàm số đồng biến trên R.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do x 1 < x 2 nên x 1 − x 2 < 0
Ta có:
f x 1 − f x 2 = 3 x 1 + 1 − 3 x 2 + 1 = 3 x 1 − x 2 < 0 ⇔ f x 1 < f x 2
Vậy hàm số y = 3x + 1 đồng biến trên R
Cho x các giá trị bất kì x 1 , x 2 sao cho x 1 < x 2
= > x 1 - x 2 < 0
Ta có:
f x 1 = 3 x 1 ; f x 2 = 3 x 2 ⇒ f x 1 − f x 2 = 3 x 1 − 3 x 2 = 3 x 1 − x 2 < 0 ⇒ f x 1 < f x 2
Vậy với x 1 < x 2 ta được f ( x 1 ) < f ( x 2 ) nên hàm số y = 3x đồng biến trên tập hợp số thực R.
Cho x các giá trị bất kì x1, x2 sao cho x1 < x2
=> x1 - x2 < 0
Ta có: f(x1) = 3x1 ; f( x2) = 3x2
=> f(x1) - f(x2) = 3x1 - 3x2 = 3(x1 - x2) < 0
=> f(x1) < f(x2)
Vậy với x1 < x2 ta được f(x1) < f(x2) nên hàm số y = 3x đồng biến trên tập hợp số thực R.
Cho hàm số: y = f(x) = 3x. Cho x hai giá trị bất kì x1, x2 sao cho x1 < x2. Chứng minh f(x1) < f(x2) rồi rút ra kết luận hàm số đã cho đồng biến trên
------------
thay x1 vào f(x) ta được f(x1)=3x1
thay x2 và f(x) ta được f(x2)=3x2
lấy f(x1)-f(x2)=3x1-3x2=3(x1-x2)(1)
ta có x1<x2=>x1-x2<0
=> (1) <0
<=>f(x1)-f(x2)<0
<=>f(x1)<f(x2)
=> hàm số đã cho đồng biến
bài làm của Nguyễn Thị Thu Trang
Từ x1 < x2 và 3 > 0 suy ra 3x1< 3x2 hay f(x1) < f(x2 ).
Vậy hàm số đã cho đồng biến trên R.
P/s: Làm theo cách ngắn gọn nhé Songoku Sky Fc11.
Lời giải:
Ta có:
\(f(x)=-2x\Rightarrow f(x_1)-f(x_2)=-2x_1-(-2x_2)=2(x_2-x_1)\)
Vì \(x_1< x_2\Rightarrow f(x_1)-f(x_2)>0\Leftrightarrow f(x_1)> f(x_2)\)
Với \(x_1< x_2\Rightarrow f(x_1)>f(x_2)\) nên hàm là hàm nghịch biến trên R
Ta có đpcm.
Cho 2 tập hợp A và B. Biết tập hợp B khác rỗng, số phần tử của tập B gấp đôi số phần tử của tập A∩B và A∪B có 10 phần tử. Hỏi tập A và B có bao nhiêu phần tử? Hãy xét các trường hợp xảy ra và dùng biểu đồ Ven minh họa?
ta có : x1<x2 suy ra 3x1<3x2 suy ra f(x1)<f(x2)
Suy ra y=f(x)=3x đồng biến trên R
Do x1 < x2 nên x1 - x2 < 0
Ta có: f(x1 ) - f(x2 )=(3x1 + 1) - (3x2 + 1) = 3(x1 - x2 ) < 0
⇔ f(x1 ) < f(x2 )
Vậy hàm số y = 3x + 1 đồng biến trên R