Cho tam giác ABC.Các đường phân giác trong của góc B và góc C cắt nhau tại S,các đường phân giác ngoài của góc B và góc C cắt nhau tại E.Chứng minh BSCE là một tứ giác nội tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) BS, BE là phân giác của hai góc kề bù nên góc SBE =900
tương tự góc SCE = 900 => tứ giác BSCE nội tiếp
b) góc ASB = \(180^0-\left(gocBAS+gocABS\right)\)(tổng 3 góc trog tg ASB)
=> góc ASB = \(180^0-\left(\frac{gócABC}{2}+\frac{gocBAC}{2}\right)=180^0-\frac{gocABC+gocBAC}{2}\)
= \(180^0-\frac{180^0-gocACB}{2}=90^0+\frac{gocACB}{2}\) (1)
Ta lại có : góc BSE = 900 - góc BES mà góc BES = góc BCS( BSCE nội tiếp) ; góc BCS = góc ACB/2 => góc BES = góc ACB/2
=> góc BSE = \(90^0-\frac{gócACB}{2}\)(2)
từ (1) và (2) => góc ASB + góc BSE = 1800. Vậy A, S, E thẳng hàng
Tự Vẽ Hình Nhé :
Theo tính chất đường phân giác ngoài của một góc luôn vuông góc với đường phân giác ngoài của góc đó
=> \(\widehat{MBN}=\widehat{MCN}=90^0\)nên hai góc \(\widehat{MBN}\)và \(\widehat{MCN}\)cùng nhìn MN dưới một góc bằng 90 độ. vậy Tứ giác MBNC nội tiếp đường tròn đường kính MN
mk ko có bít làm sao jờ ?
?????????????????
Cho tam giác ABC có các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N. Chứng minh tứ giác BMNC là tứ giác nội tiếp
Vẽ hình ra luôn
- mk ko bít
- ????
- tự làm nhé ^_^ !
Cái này bạn đổi điểm K thành điểm M là xong nha
Kẻ IG,IK,IH lần lượt vuông góc với AB,BC,AC
Kẻ MO,MD,ME lần lượt vuông góc với AB,BC,AC
Xét ΔBKI vuông tại K và ΔBGI vuông tại G có
BI chung
góc KBI=góc GBI
Do đó: ΔBKI=ΔBGI
Suy ra: IK=IG(1)
Xét ΔCKI vuông tại K và ΔCHI vuông tại H có
CI chung
góc KCI=góc HCI
Do dó: ΔCKI=ΔCHI
Suy ra: IK=IH(2)
Từ (1) và (2) suy ra IG=IH
mà I nằm trong ΔABC và IG,IH là các đường cao ứng với các cạnh AB,AC
nên AI là phân giác của góc BAC(3)
Xét ΔBOM vuông tại O và ΔBDM vuông tại D có
BM chung
góc OBM=góc DBM
Do đó: ΔBOM=ΔBDM
Suy ra: MO=MD(4)
Xét ΔMDC vuông tại D và ΔMEC vuông tại E có
CM chung
góc DCM=góc ECM
Do đó: ΔMDC=ΔMEC
Suy ra: MD=ME(5)
Từ (4) và (5) suy ra MO=ME
mà M nằm ngoài ΔABC và MO,ME là các đường cao ứng với các cạnh AB,AC
nên AM là phân giác của góc BAC(6)
Từ (3) và (6) suy ra A,I,M thẳng hàng
BM,BN là phân giác của hai góc kề bù
=>góc MBN=90 độ
CM,CN là phân giác của haigóc kề bù
=>góc MCN=90 độ
Vì góc MBN+góc MCN=180 độ
nên MBNC nội tiếp
a/ Xét tg BIC có
\(\widehat{BIC}=180^o-\left(\widehat{IBC}+\widehat{ICB}\right)=180^o-\dfrac{\widehat{B}}{2}-\dfrac{\widehat{C}}{2}=\)
\(=180^o-\left(\dfrac{\widehat{B}+\widehat{C}}{2}\right)=180^o-\left[\dfrac{180^o-\widehat{A}}{2}\right]=90^o+\dfrac{\widehat{A}}{2}\left(dpcm\right)\)
b/ Để c/m câu này ta chứng minh bài toán phụ: " Hai đường phân giác ngoài của 2 góc với đường phân giác trong của góc còn lại đồng quy"
Có hai đường phân giác của các góc ngoài của góc B và góc C cắt nhau tại J.
Từ J dựng các đường vuông góc với AB; AC; BC cắt 3 cạnh trên lần lượt tại D; E; F
Vì J thuộc đường phân giác của \(\widehat{DBC}\) nên JD=JF
Vì J thuộc đường phân giác của \(\widehat{ECB}\) nên JE=JF
(Mọi điểm thuộc đường phân giác của một góc thì cách đều hai cạnh của góc)
=> JD=JE
Xét tg vuông ADJ và tg vuông AEJ có
ẠJ chung; JD=JE (cmt) => tg ADJ = tg AEJ (hai tg vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau)
\(\Rightarrow\widehat{DAJ}=\widehat{EAJ}\) => Ạ là phân giác của góc \(\widehat{BAC}\)
Áp dụng vào bài toán:
Nối AJ => AJ là phân giác của \(\widehat{BAC}\) => AJ phải đi qua I (Trong tg 3 đường phân giác trong đồng quy) => A; I; J thẳng hàng
c/ Vì J; H; K bình đẳng nên B; I; K thẳng hàng và C; I; H thẳng hàng
=> AJ; BK; CH đồng quy tại I
Ta có: BS ⊥ BE (tính chất đường phân giác của hai góc kề bù)
Và CS ⊥ CE (tính chất đường phân giác của hai góc kề bù)
Xét tứ giác BSCE ta có:
Vậy tứ giác BSCE nội tiếp đường tròn