K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2019

Giải bài 4 trang 69 SGK Toán 9 Tập 2 | Giải toán lớp 9

3 tháng 7 2019

Giải bài 89 trang 104 SGK Toán 9 Tập 2 | Giải toán lớp 9

13 tháng 1 2022

Ai giúp với

a: Số đo cung nhỏ AB là 120 độ

Số đo cung lớn AB là 240 độ

b: \(\widehat{OAB}=\widehat{OBA}=\dfrac{180^0-120^0}{2}=30^0\)

a: Số đo cung nhỏ là 120 độ

Số đo cung lớn là 360-120=240(độ)

b: Xét ΔOAB có OA=OB

nên ΔOAB cân tại O

Suy ra: \(\widehat{OAB}=\widehat{OBA}=\dfrac{180^0-120^0}{2}=30^0\)

13 tháng 1 2022

Bn biết làm luôn câu c ko ạ

20 tháng 3 2016

* Số đo cung nhỏ AB=góc AOB( góc ở tâm)\(\Rightarrow\) Số đo cung nhỏ AB=60 độ

* Diện ích hình quạt tròn OAB là

     \(S=\frac{\pi\times R2\times n}{360}=\frac{\pi\times9\times60}{360}=\frac{3}{2}\pi\approx\frac{3}{2}\times3,14\approx4,71\)cm2

* Số đo cung lớn AB= 360 độ - 60 độ =300 độ

  Độ dài cung lớn AB là:

       l=3,14*3*300/180=15,7 cm

AH
Akai Haruma
Giáo viên
26 tháng 2 2022

Lời giải:
a. Câu hỏi chưa rõ ràng

b. Vì số đo cung nhỏ AB bằng một nửa số đo cung lớn AB mà tổng số
 đo 2 cung bằng $360^0$ nên số đo cung nhỏ $AB$ là $120^0$

Từ $O$ kẻ $OH\perp AB$ như hình. Tam giác $OAB$ cân tại $O$ nên đường cao $OH$ đồng thời là đường phân giác, trung tuyến.
Do đó: $\widehat{AOH}=\frac{1}{2}\widehat{AOB}=\frac{1}{2}.120^0=60^0$

$\frac{AH}{AO}=\sin \widehat{AOH}=\sin 60^0=\frac{\sqrt{3}}{2}$

$\Rightarrow AH=\frac{\sqrt{3}}{2}AO=\frac{\sqrt{3}}{2}R$

$\Rightarrow AB=2AH=\sqrt{3}R$

AH
Akai Haruma
Giáo viên
26 tháng 2 2022

Hình vẽ: