Số nghiệm của phương trình sin 2 x + 3 cos 2 x = 3 trên khoảng 0 ; π 2 là?
A. 1
B. 2
C. 3
D. 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sin^2x-2m.sinx.cosx-sinx.cosx+2mcos^2x=0\)
\(\Leftrightarrow sinx\left(sinx-cosx\right)-2mcosx\left(sinx-cosx\right)=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-2m.cosx\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=cosx\\sinx=2m.cosx\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=2m\end{matrix}\right.\)
Do \(tanx=1\) ko có nghiệm đã cho nên \(tanx=2m\) phải có nghiệm trên khoảng đã cho
\(\Rightarrow tan\left(\dfrac{\pi}{4}\right)< 2m< tan\left(\dfrac{\pi}{3}\right)\)
\(\Rightarrow1< 2m< \sqrt[]{3}\)
\(\Rightarrow m\in\left(\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\) (hoặc có thể 1 đáp án là tập con của tập này cũng được)
Phương trình ⇔ 1 2 sin 2 x + 3 2 cos 2 x = 3 2 ⇔ sin 2 x + π 3 = 3 2
⇔ sin 2 x + π 3 = sin π 3 ⇔ 2 x + π 3 = π 3 + k 2 π 2 x + π 3 = π − π 3 + k 2 π ⇔ x = k π x = π 6 + k π , k ∈ ℤ .
= 0 < k π < π 2 ⇔ 0 < k < 1 2 → k ∈ ℤ không có giá trị k thỏa mãn.
= 0 < π 6 + k π < π 2 ⇔ − 1 6 < k < 1 3 → k ∈ ℤ k = 0 → x = π 6 .
Chọn đáp án A.