Tìm tổng tất cả các giá trị của tham số m sao cho giá trị lớn nhất của hàm số y = x 2 - 2 x + m trên đoạn [-1; 2] bằng 5.
A. -4
B. 2
C. 0
D . -2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Xét hàm số f(x) = x 3 - 3 x + m .
Để GTNN của hàm số y = x 3 - 3 x + m 2 trên đoạn [-1;1] bằng 1 thì hoặc
Ta có
=> f(x) nghịch biến trên [-1;1]
Suy ra và
Trường hợp 1:
Trường hợp 2:
Vậy tổng các giá trị của tham số m là 0.
Đạo hàm f'(x) = m 2 - m + 1 ( x + 1 ) 2 > 0, ∀ x ∈ [ 0 ; 1 ]
Suy ra hàm số f(x) đồng biến trên [0; 1] nên min f(x) = f(0) = -m2+m
Theo bài ta có:
-m2+ m= -2 nên m= -1 hoặc m= 2.
Chọn D.
Đáp án B
Ta có: y ' = x 2 + m 2 ≥ 0 ∀ x ∈ 0 ; 3
Do đó hàm số đồng biến trên đoạn 0 ; 3
Khi đó M ax 0 ; 3 y = y 3 = 9 + 3 m 2 − 2 m 2 + 2 m − 9 = m 2 + 2 m ≤ 3 ⇔ − 3 ≤ m ≤ 1
+ Đạo hàm f'(x) = 2 - m x 2 ( x + 1 ) x ( x + 1 )
f'(x) = 0 ⇒ x = 2 m ↔ x = m 2 4 ∈ [ 0 ; 4 ] , ∀ m > 1
+ Lập bảng biến thiên, ta kết luận được
m a x [ 0 ; 4 ] f ( x ) = f ( 4 m 2 ) = m 2 + 4
+ Vậy ta cần có m 2 + 4 < 3
↔ m < 5 → m > 1 m ∈ ( 1 ; 5 )
Chọn C.
+ Xét hàm số f(x) =x2- 2x trên đoạn [ -1; 2],
+ ta có đạo hàm f’(x) = 2( x-1) và f’( x) =0 khi x= 1
Vậy:
TH1: Với m a x [ - 1 , 2 ] = | m - 1 | ,
ta có m - 1 ≥ m + 3 | m - 1 | ≥ | m | | m - 1 | = 5
↔ | m - 1 | ≥ m + 3 | m - 1 | ≥ | m | m = - 4 ∨ m = 6 ↔ m = - 4
TH2: Với
m a x [ - 1 , 2 ] y = | m + 3 | ↔ | m + 3 | ≥ | m - 1 | | m + 3 | ≥ | m | | m + 3 | ≥ 5
↔ | m + 3 | ≥ | | m - 1 | | m + 3 | ≥ | m | m = 2 ∨ m = - 8 ↔ m = 2
TH3: Với
m a x [ - 1 , 2 ] y = | m | ↔ | m | ≥ | m - 1 | | m | ≥ | m + 3 | | m | = 5 ↔ | m | ≥ | m - 1 | | m | ≥ | m + 3 | m = 5 ∨ m = - 5
( vô nghiệm)
Chọn D.