Cho hàm số y = x 3 - 3 x 2 + 2 x - 9 có đồ thị (C). Gọi k là hệ số góc của các tiếp tuyến của (C) thì giá trị nhỏ nhất của k là
A. Không tồn tại
B. 1
C. -1
D. 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Giả sử tiếp điểm là M x 0 ; y 0
⇒ Hệ số góc là f ' ( x 0 ) = 3 x 2 0 - 6 x 0 + 2
Có
f ' x 0 ≥ 1 ∀ x ∈ ℝ hệ số góc nhỏ nhất là ‒1.
Cách khác: f ' ( x 0 ) = 3 x 2 - 6 x + 2 = 3 x - 1 2 - 1 ≥ 1
Đáp án D
Cách giải: TXĐ: D = R
Gọi là 2 tiếp điểm
Tiếp tuyến tại M, N của (C) có hệ số góc đều bằng
Theo đề bài, ta có: OB = 2018OA => Phương trình đường thẳng MN có hệ số góc bằng 2018 hoặc – 2018.
TH1: Phương trình đường thẳng MN có hệ số góc là
là nghiệm của phương trình
TH2: MN có hệ số góc là 2018. Dễ đang kiểm rằng : Không có giá trị của thỏa mãn.
Vậy k = 6042
Đáp án B
Vì đồ thị hàm số cắt trục tung tại A(0;-1) ⇒ b = 1 ⇒ y = a x + 1 x − 1
Ta có y ' = − a + 1 x − 1 2 ⇒ y ' 0 = − a − 1 = − 3 ⇔ a = 2. Vậy a = 2 , b = 1
Hàm số y = ( k + 1)x + 3 có các hệ số a = k + 1, b = 3
Hàm số y = (3 – 2k)x + 1 có các hệ số a' = 3 - 2k, b' = 1
Hai hàm số là hàm số bậc nhất nên a và a' khác 0, tức là:
a) Theo đề bài ta có b ≠ b' (vì 3 ≠ 1)
Nên hai đường thẳng y = (k + 1)x + 3 và y = (3 – 2k)x + 1 song song với nhau khi a = a'
tức là: k + 1 = 3 – 2k
b) Hai đường thẳng y = (k + 1)x + 3 và y = (3 – 2k)x + 1 là hàm số bậc nhất nên a ≠ 0 và a' ≠ 0. Hai đường thẳng này cắt nhau khi a ≠ a' tức là:
Vậy với thì đồ thị của hai hàm số trên là hai đường thẳng cắt nhau.
c) Do b ≠ b' (vì 3 ≠ 1) nên hai đường thẳng không thể trùng nhau với mọi giá trị k.
- Phương trình hoành độ giao điểm của d và (C) là
- Theo định lí Viet ta có x1+x2=-m;
Giả sử A( x1; y1); B( x2; y2).
- Ta có nên tiếp tuyến của (C) tại A và B có hệ số góc lần lượt là và .Vậy
- Dấu "=" xảy ra khi và chỉ khi m= -1.
Vậy k1+ k2 đạt giá trị lớn nhất bằng -2 khi m= -1.
Chọn A.
+ Phương trình hoành độ giao điểm của d và (C) là
+ Theo định lí Viet ta có x1+ x2= -m ; x1.x2= ( -m-1) /2.
Gọi A( x1; y1) ; B( x2: y 2) .
+ Ta có y ' = - 1 ( 2 x - 1 ) 2 , nên tiếp tuyến của ( C) tại A và B có hệ số góc lần lượt là
k 1 = - 1 ( 2 x 1 - 1 ) 2 ; k 2 = - 1 ( 2 x 2 - 1 ) 2
Dấu "=" xảy ra khi và chỉ khi m= -1.
Vậy k1+ k2 đạt giá trị lớn nhất bằng - 2 khi m= -1.
Chọn B.