K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2018

-Nếu m chia hêt cho n, vậy thì:

BCNN(m,n)= m

-Nếu n chia hết cho n, vậy thì:

BCNN(m,n)=n

nếu cần ví dụ thì đây:

BCNN(8,4)=8

BCNN(5,10)=10

a)+)Theo bài ta có:a\(⋮\)c;b\(⋮\)c

\(\Rightarrow am⋮c;bn⋮c\)

\(\Rightarrow am\pm bn⋮c\)(ĐPCM)

Vậy nếu a\(⋮\)c;b\(⋮\)c  \(\Rightarrow am\pm bn⋮c\)

b)+)Theo bài ta có:a\(⋮\)m;b\(⋮\)m;a+b+c\(⋮\)m

\(\Rightarrow\left(a+b\right)+c⋮m\)

Mà a+b\(⋮\)m(vì a\(⋮\)m;b\(⋮\)m)

\(\Rightarrow c⋮m\)(ĐPCM)

Vậy c\(⋮m\) khi a\(⋮\)m;b\(⋮\)m và a+b+c\(⋮\)m

*Lưu ý ĐPCM=Điều phải chứng minh

Chúc bn học tốt

2 tháng 4 2020

thanks bạn

20 tháng 5 2020

= B cận thận sai nhé

20 tháng 5 2020

ai chơi freefire thì kb với mình

29 tháng 3 2020

Ta có : \(\hept{\begin{cases}a⋮c\\b⋮c\end{cases}}\Rightarrow\left(a+b\right)⋮c\)

Vì \(a⋮c\)và \(b⋮c\)nên \(am⋮c\)và \(bn⋮c\)với \(m,n\inℤ\)

\(\Rightarrow\left(am+bn\right)⋮c\)(đpcm)