Cho m,n thuộc N*:
B=\(\frac{2+4+6+8+...+2n}{n}\)
A=\(\frac{2+4+6+8+...+2m}{m}\)
Biết A<B so sánh m và n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2+4+6+...+2m}{m}=\frac{\left(2+2m\right).m}{2m}=\frac{2\left(1+m\right).m}{2m}=m+1\)
\(B=\frac{2+4+6+....+2n}{n}=\frac{\left(2+2n\right).n}{2n}=\frac{2\left(1+n\right).n}{2n}=n+1\)
Mà A>B=>m+1>n+1=>m>n
Vậy m>n
\(A=\frac{\frac{m\left(2+2m\right)}{2}}{m}=1+m\)
\(B=\frac{\frac{n\left(2+2n\right)}{2}}{n}=1+n\)
\(A< B\Rightarrow1+m< 1+n\Rightarrow m< n\)
Ta có :
\(M=\frac{9^4.27^5.3^6.3^4}{3^8.81^4.23^4.8^2}\)
\(M=\frac{\left(3^2\right)^4.\left(3^3\right)^5.3^{10}}{3^8.\left(3^4\right)^4.23^4.8^2}\)
\(M=\frac{3^8.3^{15}.3^{10}}{3^8.3^{16}.23^4.8^2}\)
\(M=\frac{3^{33}}{3^{24}.23^4.8^2}\)
\(M=\frac{3^9}{23^4.8^2}\)
Bài 1
a) \(P=\frac{6n+5}{2n-4}=\frac{6n-12+7}{2n-4}=3+\frac{7}{2n-4}\)
Để P là phân số thì \(\hept{\begin{cases}2n-4\ne7\\2n-4\ne1\end{cases}}\Leftrightarrow\hept{\begin{cases}n\ne\frac{11}{2}\\n\ne\frac{5}{2}\end{cases}}\)
Vậy...
b) \(P=\frac{6n+5}{2n-4}=3+\frac{7}{2n-4}\)
Để \(P\in Z\)thì \(\orbr{\begin{cases}2n-4=7\\2n-4=1\end{cases}\Leftrightarrow\orbr{\begin{cases}n=\frac{11}{2}\notin Z\\n=\frac{5}{2}\notin Z\end{cases}}}\)
Vậy không có giá trị n nào thuộc Z để P thuộc Z.
c) \(\left|2n-3\right|=\frac{5}{3}\)
Trường hợp: \(2n-3=\frac{5}{3}\Rightarrow n=\frac{7}{3}\)
\(P=\frac{6.\frac{7}{3}+5}{2.\frac{7}{3}-4}=\frac{19}{\frac{2}{3}}=\frac{57}{2}\)
Trường hợp: \(2n-3=-\frac{5}{3}\Rightarrow n=\frac{2}{3}\)
\(P=\frac{6.\frac{2}{3}+5}{2.\frac{2}{3}-4}=\frac{9}{\frac{-8}{3}}=\frac{27}{-8}\)
Bài 2
\(N=\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}=\frac{\left(2^2\right)^6.\left(3^2\right)^5+\left(2.3\right)^{10}.4.5}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}\)
\(=\frac{2^{12}.3^{10}+5.2^{12}.3^{10}}{2^{12}.3^{12}-6^{11}}=\frac{6.2^{12}.3^{10}}{6^{12}-6^{11}}\)
\(=\frac{2.3.2^{12}.3^{10}}{6.6^{11}-6^{11}}=\frac{2^{13}.3^{11}}{5.\left(2.3\right)^{11}}=\frac{2^{13}.3^{11}}{5.2^{11}.3^{11}}=\frac{4}{5}\)
Ta có : m và n là các số nguyên dương
Và \(A=\frac{2+4+6+...+2m}{m}=\frac{2.\left(1+2+....+m\right)}{m}=\frac{2.\left(m-1\right).m}{m}=2.\left(m-1\right)\)
B = \(\frac{2+4+6+...+2n}{n}=\frac{2.\left(1+2+3+...+n\right)}{n}=\frac{2.\left(n-1\right).n}{n}=2.\left(n-1\right)\)
Mà A < B
Nên 2 . ( m - 1 ) < 2 . ( n - 1 )
Do đó m - 1 < n - 1
Và m < n
Vậy m < n
m> n
THấy đúng tick giùm cái nha!!!!!!!!!!!!!
số số hạng là :
(2n - 2) : 2 + 1 = n (số)
tổng là :
(2n + 2) x n : 2 = n(n + 1)
B = n(n + 1) : n= n + 1
số số hạng là :
(2m - 2) : 2 + 1= m
tổng là :
(2m + 2) x m ; 2 = m(m + 1)
A = m(m + 1) : m = m+1
vì A<B nên m + 1 < n +1
=> m < n