Cho tam giác ABC có góc ∠ A = 80 o , các đường phân giác BD, CE cắt nhau ở I. Tính (BIC)
A. 90 o
B. 100 o
C. 130 o
D. 110 o
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Bạn tự vẽ hình giùm)
Ta có \(\widehat{IBC}=\frac{\widehat{ABC}}{2}\)(BD là tia phân giác của \(\widehat{ABC}\))
và \(\widehat{ICB}=\frac{\widehat{ACB}}{2}\)(CE là tia phân giác của \(\widehat{ACB}\))
=> \(\widehat{IBC}+\widehat{ICB}=\frac{\widehat{ABC}+\widehat{ACB}}{2}\)
=> \(180^o-\widehat{BIC}=\frac{180^o-\widehat{A}}{2}\)
=> \(180^o-\widehat{BIC}=90^o-\frac{\widehat{A}}{2}\)
=> \(180^o-90^o=\widehat{BIC}-\frac{\widehat{A}}{2}\)
=> \(\widehat{BIC}-\frac{\widehat{A}}{2}=90^o\)
=> \(\widehat{BIC}=90^o+\frac{\widehat{A}}{2}\)
Thay \(\widehat{A}=80^o\)vào biểu thức \(\widehat{BIC}=90^o+\frac{\widehat{A}}{2}\), ta có:
\(\widehat{BIC}=90^o+\frac{80^o}{2}\)
=> \(\widehat{BIC}=90^o+40^o=130^o\)
Ta có ^IBC=^ABC2 (BD là tia phân giác của ^ABC)
và ^ICB=^ACB2 (CE là tia phân giác của ^ACB)
=> ^IBC+^ICB=^ABC+^ACB2
=> 180o−^BIC=180o−^A2
=> 180o−^BIC=90o−^A2
=> 180o−90o=^BIC−^A2
=> ^BIC−^A2 =90o
=> ^BIC=90o+^A2
Thay ^A=80ovào biểu thức ^BIC=90o+^A2 , ta có:
^BIC=90o+80o2
=> ^BIC=90o+40o=130o
a)\(\Delta ABC\)có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^o\) (tổng 3 góc trong tam giác)
=>\(60^o+\widehat{ABC}+\widehat{ACB}=180^o\)=>\(\widehat{ABC}+\widehat{ACB}=120^o\)
BD là tia phân giác của góc ABC => \(\widehat{ABD}=\widehat{DBC}=\frac{1}{2}.\widehat{ABC}\)
CE là tia phân giác của góc ACB => \(\widehat{ACE}=\widehat{ECB}=\frac{1}{2}.\widehat{ACB}\)
=>\(\widehat{DBC}+\widehat{ECB}=\frac{1}{2}.\widehat{ABC}+\frac{1}{2}.\widehat{ACB}=\frac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)=\frac{1}{2}.120=60^o\)
\(\Delta BOC\) có: \(\widehat{DBC}+\widehat{BOC}+\widehat{ECB}=180^o\) (tổng 3 góc trong tam giác)
=>\(\widehat{BOC}+60^o=180^o\Rightarrow\widehat{BOC}=120^o\)
b) Góc ngoài tại đỉnh B của tam giác ABC kề bù với góc ABC <=>\(\widehat{ABC}+\widehat{CBx}=180^o\)
Góc ngoài tại đỉnh C của tam giác ABC kề bù với góc ACB<=>\(\widehat{ACB}+\widehat{BCy}=180^o\)
=>\(\widehat{ABC}+\widehat{CBx}+\)\(\widehat{ACB}+\widehat{BCy}=360^o\)=>\(\widehat{CBx}+\widehat{BCy}+120^o=360^o\)
=>\(\widehat{CBx}+\widehat{BCy}=240^o\)
BI là tia phân giác của góc CBx => \(\widehat{BCI}=\widehat{IBx}=\frac{1}{2}.\widehat{CBx}\)
CI là tia phân giác của góc BCy => \(\widehat{BCI}=\widehat{ICy}=\frac{1}{2}.\widehat{BCy}\)
=>\(\widehat{CBI}+\widehat{BCI}=\frac{1}{2}.\widehat{CBx}+\frac{1}{2}.\widehat{BCy}=\frac{1}{2}\left(\widehat{CBx}+\widehat{BCy}\right)=\frac{1}{2}.240^o=120^o\)
\(\Delta BCI\) có: \(\widehat{CBI}+\widehat{BCI}+\widehat{BIC}=180^o\) (tổng 3 góc trong tam giác)
=>\(120^o+\widehat{BIC}=180^o\Rightarrow\widehat{BIC}=60^o\)
Vậy ............................
Trong ∆ABC, ta có:
∠A + ∠B + ∠C = 180o (tổng ba góc trong tam giác)
Suy ra: ∠B + ∠C = 180o - ∠A = 180o - 70o = 110o
Ta có:
∠(B1 ) = 1/2 ∠B (vì BD là tia phân giác)
∠(C1 ) = 1/2 ∠C (vì CE là tia phân giác)
Trong ∆BIC, ta có:
∠(BIC) + ∠(B1 ) + ∠(C1 ) = 180o (tổng 3 góc trong tam giác)
Suy ra: ∠(BIC) = 180o - (∠(B1 ) + ∠(C1)) = 180o - 1/2 (∠B + ∠C)
= 180o - 1/2 .110o = 125o
Trong tam giác ABC có:
∠A + ∠(ABC) + ∠(ACB) = 180o ⇒ ∠(ABC) + ∠(ACB) = 180o - 80o = 100o
Mà BI và CI lâ các tia phân giác nên
∠(ABC) + ∠(ACB) = 2.∠(IBC) + 2.∠(ICB) = 2 (∠(IBC) + ∠(ICB) )
Suy ra ∠(IBC) + ∠(ICB) = 50o
Mà ∠(IBC) + ∠(ICB) + ∠(BIC) = 180o ⇒ ∠(BIC) = 130o. Chọn C