Cho tam giác ABC cân tại A, A B = 10 c m , B C = 16 c m . Độ dài đường trung tuyến AM là:
A. 6cm
B. 156 c m
C. 2cm
D. 4cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý hàm số COS ta có:
AC^2 = AB^2+AC^2 - 2AB.AC.cosB
= 12^2 + 6^2 -2.12.6.(-1/2) = 252 ------> AC = CĂN 252
Vì BD là phân giác của góc B nên theo tính chất ta có:
AD/AC =AB/BC = 6/12 = 1/2
----> DC = 2 AD , mà AC = CĂN 252 ------> AD= 1/3 căn 252
Áp dụng định lý hàm số COS đồi với tam giác ABD có:
AD^2=AB^2+BD^2 - 2AB.BD.cosB
<=>(1/3 căn 252)^2= 6^2+ BD^2 - 2.6.BD.(1/2)
<=> BD^2 - 6BD + 8 =0
<=> BD = 4 hoặc BD =2
Vậy: BD = 4 (cm)
Trên đây là bài giải với ĐK: BD là phân giác trong.
còn nếu BD là phân giác ngoài thì tỉ lệ: AC/AD =AB/BC
DO VẬY BD = 8 cm
hoac vay
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là trung tuyến
nên AM là đường cao
BC=12cm nên BM=6cm
=>AM=8(cm)
c: I cách đều ba cạnh nên I là giao điểm của ba đường phân giác
=>AI là phân giác của góc BAC
mà AM là phân giác của góc BC
nên A,I,M thẳng hàng
Tam giác ABC cân tại A, AM là đường trung tuyến đồng thời là đường cao.
Áp dụng định lí Pytago trong tam giác vuông ABM có:
BM^2=AB^2-AM^2=10^2-6^2=64=>AM=8cm. Chọn D
Tam giác ABC cân tại A, AM là đường trung tuyến đồng thời là đường cao.
Áp dụng định lí Pytago trong tam giác vuông ABM có:
BM^2=AB^2-AM^2=10^2-6^2=64=>AM=8cm.
Chọn D
a) Ta có: ΔABC vuông tại A(gt)
mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)
nên \(AM=\dfrac{1}{2}BC\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
Tam giác ABC cân tại A nên AM đồng thời là đường cao và M là trung điểm của BC
Khi đó ta có AM2 = AB2 - BM2 = 102 - 82 = 36 ⇒ AM = 6cm. Chọn A