K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2019

Ta có

D = x ( x 2 n - 1   +   y )   –   y ( x   +   y 2 n - 1 )   +   y 2 n   –   x 2 n   +   5

= x . x 2 n - 1   +   x . y   –   y . x   –   y . y 2 n - 1   +   y 2 n   –   x 2 n   +   5

= x 2 n   +   x y   –   x y   –   y 2 n   +   y 2 n   –   x 2 n   +   5

= ( x 2 n   –   x 2 n )   +   ( x y   –   x y )   +   ( y 2 n   –   y 2 n )   +   5

= 0 + 0 + 0 + 5 = 5

Đáp án cần chọn là: D

22 tháng 12 2021

3r3reR

18 tháng 8 2015

\(x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)\)

\(=x^3-xy-x^3-x^2y+x^2y-xy=-2xy\)(1)

Thay \(x=\frac{1}{2};y=-100\) vào (1), ta có:

\(-2.\frac{1}{2}.-100=100\)

a: \(=y^2-9\)

b: \(=m^3+n^3\)

c: \(=8-a^3\)

d: \(=\left(a-b-c-a+b-c\right)\left(a-b-c+a-b+c\right)\)

\(=-2c\cdot\left(2a-2b\right)\)

\(=-4ac+4bc\)

f: \(=\left(1-x^3\right)\left(1+x^3\right)=1-x^6\)

5 tháng 9 2020

Lâu rồi mới làm một bài :))

Áp dụng BĐT Cauchy ta có:

\(x^2+3x+y^2+3y+\frac{9}{x^2+y^2+1}=\left(x^2+y^2+1+\frac{9}{x^2+y^2+1}\right)+\left(3x+3y\right)-1\ge2\sqrt{\left(x^2+y^2+1\right).\frac{9}{x^2+y^2+1}}+3.2\sqrt{xy}-1=6+6-1=11\).

Dấu "=" xảy ra khi và chỉ khi x = y = 1.

Vậy Min D = 11 khi và chỉ khi x = y = 1.

a: \(x^2+x-2x-2\)

\(=x\left(x+1\right)-2\left(x+1\right)\)

\(=\left(x+1\right)\left(x-2\right)=\left(-1+1\right)\left(-1-2\right)=0\)

b: \(3x^2-2x+9x-6\)

\(=x\left(3x-2\right)+3\left(3x-2\right)\)

\(=\left(3x-2\right)\left(x+3\right)=\left(3\cdot7-2\right)\left(7+3\right)\)

\(=19\cdot10=190\)

c: \(2x^2-3xy-xy^2\)

\(=x\left(2x-3y-y^2\right)\)

\(=2\left(2\cdot2-3\cdot3-9\right)\)

\(=2\cdot\left(4-18\right)=-28\)

24 tháng 5 2020

giúp mình cả câu b đi ạ

22 tháng 5 2020

Bài 2: Tính giá trị của biểu thức:
a) P= 1/3 x^2 y + xy^2 - xy + 1/2 xy^2 - 5xy - 1/3 x^2 y (1)

Tại x = 0,5; y = 1

Thay \(x=0,5 ; y=1\) vào biểu thức (1) , ta có :

P= \(\dfrac{1}{3} . 0,5^2.1+0,5.1^2-0,5.1+\dfrac{1}{2}. 0,5.1^2-5.0,5.1-\dfrac{1}{3}.0,5^2.1\)

P= \(=\dfrac{1}{12}+\dfrac{1}{2} -0,5+\dfrac{1}{4} -\dfrac{5}{2} - \dfrac{1}{12}\)

P= \(= \dfrac{-9}{4}\)

Vậy \(P =\dfrac{-9}{4}\)