Cho hình lăng trụ A B C . A ' B ' C ' có đáy là tam giác đều cạnh có độ dài bằng 2a. Hình chiếu vuông góc của A' lên mặt phẳng (ABC) trùng với trung điểm H của BC. Khoảng cách giữa hai đường thẳng BB' và A'H bằng
A. a 3 2
B. a 3 3
C. a
D. 2a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B.
Do H là trung điểm AB nên d B ; A C C ' A ' d H ; A C C ' A ' = B A H A = 2
⇒ d B ; A C C ' A ' = 2 d d H ; A C C ' A '
Ta có A H ' ⊥ A B C nên A A ' , ( A B C ) ⏜ = A ' A , H A ⏜ = A ' A H ⏜ = 60 °
Gọi D là trung điểm của AC thì B D ⊥ A C .
Kẻ H E ⊥ A C , E ∈ A C → H E / / B D
Ta có A C ⊥ A ' H A C ⊥ H E ⇒ A C ⊥ A ' H E ⊥ A C C ' A '
Trong A ' H E kẻ H K ⊥ A ' E , K ∈ A ' E ⇒ H K ⊥ A C C ' A '
Suy ra
d H ; A C C ' A ' = H K ⇒ 2 d B ; A C C ' A ' = 2 H K
Ta có B D = 2 a 3 2 = a 3 ⇒ H E = 1 2 B D = a 3 2
Xét tam giác vuông A ' A H có A H ' = A H . tan 60 ° = a 3
Xét tam giác vuông A ' H E có 1 H K 2 = 1 A ' H 2 + 1 H E 2 = 1 a 3 2 + 1 a 3 2 2 = 5 3 a 2 ⇒ H K = a 15 5 .
Vậy d B ; A C C ' A ' = 2 H K = 2 a 15 5
Đáp án B.
Do H là trung điểm AB nên
=> d(B;(ACC'A'))= 2d(H;(ACC'A'))
Ta có A'H ⊥ (ABC) nên
Gọi D là trung điểm của AC thì BD ⊥ AC
Kẻ HE ⊥ AC,
Ta có
Trong (A'HE) kẻ HK ⊥ A'E,
Suy ra = 2HK
Ta có
Xét tam giác vuông A'AH có
Xét tam giác vuông A'HE có
Đáp án B
Gọi M, N lần lượt là trung điểm của AC và AM.
Khi đó ΔAHM là tam giác đều và NH ⊥ AC .