Ba người cùng bắn vào một bia một cách độc lập. Xác suất để người thứ nhất, thứ hai, thứ ba bắn trúng đích lần lượt là 0,5; 0,6; và 0,8 Xác suất để có đúng 2 người bắn trúng đích là
A. 0,24
B. 0,46
C. 0,92
D. 0,96
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi X là biến cố: “có đúng 2 người bắn trúng đích “
· Gọi A là biến cố: “người thứ nhất bắn trúng đích P(A)=0,8; P ( A ¯ ) = 0 , 2
Gọi B là biến cố: “người thứ hai bắn trúng đích P(B)=0,6; P ( B ¯ ) = 0 , 4
· Gọi C là biến cố: “người thứ ba bắn trúng đích P(C)=0,5; P ( C ¯ ) = 0 , 5
Ta thấy biến cố A, B, C là 3 biến cố độc lập nhau, theo công thức nhân xác suất ta có:
P ( X ) = P ( A . B . C ¯ ) + P ( A . B ¯ . C ) + P ( A ¯ . B . C ) =0,8.0,6.0,5+0,8.0,4.0,5+0,2.0,6.0,5=0,46
Chọn C.
Gọi X là biến cố: “có đúng 2 người bắn trúng đích “
Gọi A là biến cố: “người thứ nhất bắn trúng đích” ⇒ P A = 0 , 8 ; P A ¯ = 0 , 2.
Gọi B là biến cố: “người thứ hai bắn trúng đích” ⇒ P B = 0 , 6 ; P B ¯ = 0 , 4.
Gọi C là biến cố: “người thứ ba bắn trúng đích” ⇒ P C = 0 , 5 ; P C ¯ = 0 , 5.
Ta thấy biến cố A, B, C là 3 biến cố độc lập nhau, theo công thức nhân xác suất ta có:
P X = P A . B . C ¯ + P A . B ¯ . C + P A ¯ . B . C = 0 , 8.0 , 6.0 , 5 + 0 , 8.0 , 4.0 , 5 + 0 , 2.0 , 6.0 , 5 = 0 , 46.
Chọn đáp án C.
Lời giải:
Xác suất để cả ba người cùng bắn trúng đích là:
$0,8.0,6.0,5=0,24$
Lời giải:
a. Xác suất chỉ người thứ nhất bắn trúng là:
$0,1(1-0,2)(1-0,3)=0,056$
b. Xác suất không người nào bắn trúng: $(1-0,1)(1-0,2)(1-0,3)=0,504$
Xác suất có ít nhất 1 người bắn trúng: $1-0,504=0,496$
c. Xác suất cả 3 người bắn trúng: $0,1.0,2.0,3=0,006$
d.
Xác suất người đầu bắn trúng và người 2 trượt:
$0,1(1-0,2)=0,08$
e.
Xác suất có đúng 1 người bắn trúng:
$0,1(1-0,2)(1-0,3)+(1-0,1).0,2.(1-0,3)+(1-0,1)(1-0,2)0,3=0,398$
f. Xác suất có ít nhất 2 người bắn trúng:
1- xác suất cả 3 cùng trượt - xác suất chỉ có 1 người bắn trúng
= $1-(1-0,1)(1-0,2)(1-0,3)-0,398=0,098$
g.
Xác suất không có quá 2 người bắn trúng
= 1- xác suất cả 3 người trúng = $1-0,1.0,2.0,3=0,994$
Gọi C là biến cố "Có ít nhất một người bắn trúng bia", khi đó biến cố đối của B là biến cố C
Do đó
P
(
C
)
=
1
−
P
(
B
)
=
1
−
0
,
06
=
0
,
94
.
Chọn đáp án C.
Đáp án D
Phương pháp:
A, B là các biến cố độc lập thì P ( A . B ) = P ( A ) . P ( B )
Chia bài toán thành các trường hợp:
- Một người bắn trúng và một người bắn không trúng,
- Cả hai người cùng bắn không trúng.
Sau đó áp dụng quy tắc cộng.
Cách giải:
Xác suất để xạ thủ thứ nhất bắn không trúng bia là: 1 − 1 2 = 1 2 .
Xác suất để xạ thủ thứ nhất bắn không trúng bia là: 1 − 1 3 = 2 3 .
Gọi biến cố A:”Có ít nhất một xạ thủ không bắn trúng bia ”.
Khi đó biến cố A có 3 khả năng xảy ra:
+) Xác suất người thứ nhất bắn trúng bia, người thứ hai không bắn trúng bia: 1 2 . 2 3 = 1 3 .
+) Xác suất người thứ nhất không bắn trúng bia, người thứ hai bắn trúng bia: 1 2 . 1 3 = 1 6 .
+) Xác suất cả hai người đều bắn không trúng bia:
Khi đó P ( A ) = 1 2 . 2 3 + 1 2 . 1 3 + 1 2 . 1 3 = 2 3 .
Từ giả thiết suy ra xác suất để người thứ nhất, thứ hai, thứ ba bắn không trúng đích lần lượt là 0,5; 0,4 và 0,2
Để có đúng người bắn trúng đích thì có các trường hợp sau
Vậy xác suất để có đúng người bắn trúng đích là
Chọn B.