K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2018

Sai từ bước 3 bởi vì  

f ' 0 - = lim x → 0 - f x - f 0 x - 0 = lim x → 0 - - x - 0 x - 0 = 1

Do f ' 0 + ≠ f ' 0 -  nên f '(0) không tồn tại

Đáp án C

16 tháng 2 2018

Đáp án D

23 tháng 8 2019

Đáp án C

Từ đó ta có bảng biến thiên của g(x):

15 tháng 11 2018

11 tháng 12 2021

\(C_1:f\left(1\right)=2-5=-3\\ f\left(2\right)=2\cdot4-5=3\\ f\left(0\right)=0-5=-5\\ f\left(-1\right)=2-5=-3\\ f\left(-2\right)=2\cdot4-5=3\\ C_2:\begin{matrix}x&1&2&0&-1&-2\\y=2x^2-5&-3&3&-5&-3&3\end{matrix}\)

2 tháng 4 2019

Đáp án A

5 tháng 12 2019

Đáp án A

23 tháng 10 2018

Đáp án C

Bảng biến thiên của hàm số f(x) là

Hàm số  f x  là hàm số chẵn trên  ℝ nên đồ thị của hàm số nhận trục tung làm trục đối xứng. Do đó phương trình  f ( x ) + m = 0 có bốn nghiệm thực phân biệt khi và chỉ khi phương trình f ( x ) + m = 0 có hai nghiệm dương phân biệt hay phương trình f ( x ) = - m  có hai nghiệm dương phân biệt

⇔ 1 < - m < e 4 ⇔ - e 4 < m < - 1

 

3 tháng 8 2019

Đáp án C

Phương pháp: Từ BBT của đồ thị hàm số y = f(x) suy ra BBT của đồ thị hàm số y = f(|x|), số nghiệm của phương trình f(|x|) = 0 là số giao điểm của đồ thị hàm số y = f(|x|) và đường thẳng y = f(0) 

Cách giải: Từ bảng biến thiên hàm số y = f(x) ta có bảng biến thiên hàm số f(|x|) = f(0) như sau:

Suy ra, phương trình f(|x|) = f(0) có 3 nghiệm