Nếu a, b và c là các số bất kì và a > b thì bất đẳng thức nào sau đây luôn đúng?
A. a c > b c
B. a 2 > b 2
C. a + c > b + c
D. c - a > c - b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do a< b mà 2 > 0 nên 2a < 2b (*)
Cộng cả 2 vế của (*) với 5c ta được: 2a + 5c < 2b + 5c
Do a + 4 c > b + 4c nên : a + 4c + (- 4c) > b + 4c + (-4c) hay a> b.
Nhân cả 2 vế với 6> 0 ta được: 6a > 6b.
Chọn C.
Áp dụng tính chất: Nếu a > b và c > d thì a + c > b + d .
Có thể lấy ví dụ để thấy các bất đẳng thức còn lại không đúng. ( bỏ đi)
Đáp án là D.
Áp dụng tính chất: Nếu a > b và c > d thì a + c > b + d , từ đó suy ra a - d > b - c .
Có thể lấy ví dụ để thấy các bất đẳng thức còn lại không đúng. ( bỏ đi)
Đáp án là C.
* Từ a- b > a suy ra: a – b + ( -a) > a + (-a) hay – b >0
⇔ b < 0 ( nhân cả 2 vế với -1).
* Từ a + b < b suy ra: a + b + (- b) < b + (-b)
Hay a < 0
Vậy a < 0 và b < 0 .
Lời giải:
$a+2c> b+c$
$\Rightarrow a> b-c$
Không có cơ sở nào để xác định xem biểu BĐT nào đúng.
Quy tắc chuyển vế trong bất đẳng thức: khi chuyển một số hạng từ vế này sang vế kia của bất đẳng thức ta phải đổi dấu các số hạng đó, dấu “+” đổi thành dấu “-“ và ngược lại.
Áp dụng tính chất: Nếu a > b và c là số bất kì thì a + c > b + c.
Có thể lấy ví dụ để thấy các bất đẳng thức còn lại không đúng. ( bỏ đi)
Đáp án là C.