Cho hình chữ nhật ABCD và số thực k >0. Tập hợp các điểm M thỏa mãn đẳng thức M A → + M B → + M C → + M D → = k là
A. một đoạn thẳng.
B. một đường thẳng.
C. một đường tròn.
D. một điểm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi I là tâm của hình chữ nhật ABCD ta có 2 M I → = M A → + M C → 2 M I → = M B → + M D → , ∀ M .
Do đó :
M A → + M B → + M C → + M D → = k ⇔ ( M A → + M C → ) + ( M B → + M D → ) = k ⇔ 2 M I → + 2 M I → = k ⇔ 4 M I → = k ⇔ M I → = k 4 . ( * )
Vì I là điểm cố định nên tập hợp các điểm M thỏa mãn đẳng thức (*) là đường tròn tâm I bán kính R = k 4 .
Chọn C.
Gọi O là tâm hình chữ nhật
\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\right|=k\)
\(\Leftrightarrow\left|\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}\right|=k\)
\(\Leftrightarrow4\left|\overrightarrow{MO}\right|=k\)
\(\Rightarrow\left|\overrightarrow{MO}\right|=\frac{k}{4}\Rightarrow\) M thuộc đường tròn tâm O bán kính \(\frac{k}{4}\)
Chọn B
Cách giải: Ta có:
log 2 x 2 + a 2 + log 2 x 2 + a 2 + log 2 x 2 + a 2 + . . . + log . . . 2 ⏝ n c ă n x 2 + a 2 - 2 n + 1 - 1 log 2 x a + 1 = 0