Cho hàm số y = 1 x − 3 . Tính đạo hàm cấp hai của hàm số đã cho tại x = 1?
A. y " ( 1 ) = − 1 4
B. y " ( 1 ) = 1 4
C. y " ( 1 ) = 1 6
D. y " ( 1 ) = − 1 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp:
Dựa vào khái niệm cực trị và các kiến thức liên quan.
Cách giải:
(1) chỉ là điều kiện cần mà không là điều kiện đủ.
VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.
(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.
(3) hiển nhiên sai.
Vậy (1), (2), (3): sai; (4): đúng
B
Từ đồ thị của hàm số f"(x) ta có bảng biến
thiên của hàm số f'(x) như sau:
a) với ∆x là số gia của đối số tại x=1, ta có
Δ y = ( 1 + Δ x ) 2 − 2 ( 1 + Δ x ) 1 + Δ x + 1 − 1 − 2 1 + 1 = 1 + 2 Δ x + ( Δ x ) 2 − 2 − 2 Δ x 2 + Δ x + 1 2 = ( Δ x ) 2 − 1 2 + Δ x + 1 2 = 2 ( Δ x ) 2 − 2 + 2 + Δ x 2 ( 2 + Δ x ) = 2 ( Δ x ) 2 + Δ x 2 ( 2 + Δ x ) = ( 2 Δ x + 1 ) . Δ x 2 ( 2 + Δ x ) Δ y Δ x = 2 Δ x + 1 2 ( 2 + Δ x )
Vậy y’(1) =1/4.
Đáp án A
Đáp án A
A sai vì hàm số y = x 3 có y ' 0 = 0 nhưng không đạt cực trị tại x = 0
B sai vì hàm số y = x 4 có y ' 0 = 0 , y ' ' 0 = 0 đạo hàm và có đạo hàm cấp hai tại điểm x 0 thoả mãn điều kiện f ' x 0 = f ' ' x 0 = 0 thì điểm x 0 nhưng không đạt cực trị tại x = 0
C sai vì “Nếu f ' x đổi dấu khi x qua x 0 thì điểm x 0 là điểm trị (cực đại và cực tiểu) của hàm số y = f ' ' x
D sai vì “Nếu hàm số y = f x có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thoả mãn điều kiện f ' x 0 = 0 ; f ' ' x 0 > 0 thì điểm x 0 là điểm cực đại của hàm số y = f ' ' x
Đáp án A
Mệnh đề 1) sai vì f ' x 0 = 0 chỉ là điều kiện cần chưa là điều kiện đủ để hàm số đạt cực trị tại x 0
Mệnh đề 2) Sai vì khi f ' x 0 = f ' ' x 0 = 0 có thể hàm số có thể đạt cực trị hoặc không đạt cực trị tại x 0 .
Mệnh đề 3) sai vì f ' x đổi dấu qua điểm x 0 thì điểm x 0 có thể là điểm cực đại hoặc điểm cực tiểu của hàm số.
Mệnh đề 4) Sai vì trong trường hợp này x 0 là điểm cực tiểu của đồ thị hàm số.
Đáp án A
Ta có: y ' = − 1 ( x − 3 ) 2 . ( x − 3 ) ' = − 1 ( x − 3 ) 2 y " = − 1 ( x − 3 ) 2 ' = − − 1 ( x − 3 ) 4 = 1 ( x − 3 ) 4 .2 ( x − 3 ) = 2 ( x − 3 ) 3 ;
⇒ y " ( 1 ) = 2 ( 1 − 3 ) 3 = − 1 4 .