Trong không gian cho điểm O bất kì và bốn điểm A, B, C, D không thẳng hàng. Chứng minh điều kiện cần và đủ để tứ giác ABCD là hình bình hành là: O A → + O C → = O B → + O D →
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
CM
26 tháng 8 2019
Chọn B.
- Trước hết, điều kiện cần và đủ để tứ giác ABCD là hình bình hành là:
- Với mọi điểm O bất kì khác A, B, C, D ta có:
CM
2 tháng 5 2018
Giả sử bốn điểm A, B, C, D tạo thành một hình bình hành ta có:
Ngược lại, giả sử ta có hệ thức:
Vì A, B, C, D không thẳng hàng nên tứ giác ABCD là hình bình hành.
9 tháng 1 2023
a: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
b: ABCDlà hình bình hành
nên AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm của AC
AMCN là hình bình hành
nên AC cắt MN tại trung điểm của mỗi đường
=>M đối xứng N qua O
+) Trước hết, điều kiện cần và đủ để tứ giác ABCD là hình bình hành là: .
+) Với mọi điểm O bất kì khác A, B, C, D ta có:
- Vậy điều kiện cần và đủ để tứ giác ABCD là hình bình hành là: