Xét các số phức z = a + b i , ( a , b ∈ R ) thỏa mãn 4 ( z - z ¯ ) - 15 i = i ( z + z ¯ - 1 ) 2 . Tính F = - a + 4 b khi z - 1 2 + 3 i đạt giá trị nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với
Khi đó
Dấu bằng đạt tại
⇒ a - 2 b = - 2
Chọn đáp án B.
Mẹo trắc nghiệm: Có
Khi đó
Khi đó a-2b
Chọn đáp án B.
Đáp án A.
Phương pháp:
Từ z = z ¯ + 4 - 3 i tìm ra quỹ tích điểm M(x;y) biểu diễn cho số phức z = x + yi
Gọi điểm M(x;y) là điểm biểu diễn cho số phức z và A(–1;1); B(2; –3) ta có:
|z+1–i|+|z–2+3i| = MA + MB nhỏ nhất ó MA = MB
Cách giải: Gọi z = x + ui ta có:
Gọi điểm M(x;y) là điểm biểu diễn cho số phức z và A(–1;1); B(2; –3) ta có:
|z+1–i|+|z–2+3i| = MA + MB nhỏ nhất.
Ta có: dấu bằng xảy ra ó MA = MB => M thuộc trung trực của AB.
Gọi I là trung điểm của AB ta có và A B → = 3 ; - 4
Phương trình đường trung trực của AB là
Để (MA + MB)min ó Tọa độ điểm M là nghiệm của hệ phương trình
Bằng cách ước lượng ta có AN' max khi d là tiếp tuyến của đường tròn và ở xa AB nhất. Dễ tìm được khi đó M ( 6;4 ) nên P = 10
Đáp án cần chọn là A
Đáp án A.