Tìm m để hàm số y = - x 3 + ( 2 m + 1 ) x 2 - ( m 2 - 3 m + 2 ) x - 4 có cực đại, cực tiểu nằm về hai phía so với trục tung
A. m ∈ (1; 2)
B. m ∈ [1; 2]
C. m ∈ (- ∞; 1) ∪ (2; +∞)
D. m ∈ (- ∞; 1] ∪ [2; +∞)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
y’’ = 36x2 – 24x – 12
=> y’’(-1) = 48 > 0
Đồ thị hàm số có điểm cực tiểu là M(-1;-10) nên S = -11
y ' = - 3 x 2 + 2 ( 2 m + 1 ) x - m 2 + 3 m - 2
Để hàm số đã cho có cực đại, cực tiểu nằm về hai phía so với trục tung khi và chỉ khi phương trình y’ = 0 có hai nghiệm x 1 , x 2 trái dấu.
Chọn A