K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2017

Bài 1: Cho Δ ABC vuông góc tại A có BC = 5cm, AC = 3cm, EF = 3cm, DE = DF = 2,5cm. Chọn phát biểu đúng?A. Δ ABC ∼ Δ DEFB. ABCˆ = EFDˆC. ACBˆ = ADFˆD. ACBˆ = DEFˆBài 2: Cho hai tam giác Δ RSK và Δ PQM có: RS/PQ = RK/PM = SK/QM thì:A. Δ RSK ∼ Δ PQMB. Δ RSK ∼ Δ MPQC. Δ RSK ∼ Δ QPMD. Δ RSK ∼ Δ QMPBài 3: Nếu Δ RSK ∼ Δ PQM có: RS/PQ = RK/PM = SK/QM thìA. RSKˆ = PQMˆB. RSKˆ = PMQˆC. RSKˆ = MPQˆD. RSKˆ = QPMˆBài 4: Chọn câu trả lời...
Đọc tiếp

Bài 1: Cho Δ ABC vuông góc tại A có BC = 5cm, AC = 3cm, EF = 3cm, DE = DF = 2,5cm. Chọn phát biểu đúng?

A. Δ ABC ∼ Δ DEF

B. ABCˆ = EFDˆ

C. ACBˆ = ADFˆ

D. ACBˆ = DEFˆ

Bài 2: Cho hai tam giác Δ RSK và Δ PQM có: RS/PQ = RK/PM = SK/QM thì:

A. Δ RSK ∼ Δ PQM

B. Δ RSK ∼ Δ MPQ

C. Δ RSK ∼ Δ QPM

D. Δ RSK ∼ Δ QMP

Bài 3: Nếu Δ RSK ∼ Δ PQM có: RS/PQ = RK/PM = SK/QM thì

A. RSKˆ = PQMˆ

B. RSKˆ = PMQˆ

C. RSKˆ = MPQˆ

D. RSKˆ = QPMˆ

Bài 4: Chọn câu trả lời đúng?

A. Δ ABC, Δ DEF;AB/DE = AC/DF;Bˆ = Eˆ ⇒ Δ ABC ∼ Δ DEF

B. Δ ABC, Δ DEF;AB/DE = AC/DF;Cˆ = Fˆ ⇒ Δ ABC ∼ Δ DEF

C. Δ ABC, Δ DEF;AB/DE = AC/DF;Aˆ = Dˆ ⇒ Δ ABC ∼ Δ DEF

D. Δ ABC, Δ DEF;AB/DE = AC/DF;Aˆ = Eˆ ⇒ Δ ABC ∼ Δ DEF

Bài 5: Cho hình bên, ABCD là hình thang ( AB//CD ) có AB = 12,5cm; CD = 28,5cm; DABˆ = DBCˆ. Tính độ dài đoạn BD gần nhất bằng bao nhiêu?

A. 17,5         B. 18

C. 18,5       D. 19

II. Bài tập tự luận

Bài 1: Tứ giác ABCD có AB = 2cm; BC = 6cm; CD = 8cm; DA = 3cm và BD = 4cm. Chứng minh rằng:

a) Δ BAD ∼ Δ DBC

b) ABCD là hình thang

 
0
4 tháng 7 2017

Đáp án: A

Xét ΔAOD và ΔBOC có

OA/OB=OD/OC

góc AOD chung

Do đó: ΔAOD\(\sim\)ΔBOC

13 tháng 5 2019

29 tháng 12 2018

16 tháng 12 2022

mong mọi người giải giúp mình với ạ mình đang cần gấp

 

a: (Δ)//d nên Δ: -x+2y+c=0

=>VTPT là (-1;2)

=>VTCP là (2;1)

PTTS là:
x=3+2t và y=1+t

b: (d): -x+2y+1=0

=>Δ: 2x+y+c=0

Thay x=4 và y=-2 vào Δ, ta được:

c+8-2=0

=>c=-6

 

14 tháng 12 2022

a: Xét ΔAMB và ΔCMD có

MA=MC

góc AMB=góc CMD

MB=MD

Do đó: ΔAMB=ΔCMD
b: ΔAMB=ΔCMD

nên AB=CD và góc MAB=góc MCD

=>AB//CD

c: Xét tứ giác AKBC có

N là trung điểm chung của AB và KC

nên AKBC là hình bình hành

=>AK//BC

Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

nên ABCD là hình bình hành

=>AD//BC

mà AK//BC

nên D,A,K thẳng hàng

24 tháng 12 2022

Cho góc nhọn xOy. Trên tia Ox lấy điểm A và C sao cho OA < OC, trên tia Oy lấy điểm B và D sao cho OA = OB ; OC = OD. Gọi E là giao điểm của AD và BC. a) Chứng minh: AD = BC. b) Chứng minh: ∆EAC = ∆EBD. c) Chứng minh: OE là tia phân giác của góc xOy. (ảnh 1)

a) Chứng minh: AD = BC.

Xét ∆OAD và ∆OBC có:

OA = OB (gt);

ˆAODAOD^ chung;

OD = OC (gt)

Do đó ∆OAD = ∆OBC (c.g.c)

Suy ra AD = BC (hai cạnh tương ứng)

b) Chứng minh: ∆EAC = ∆EBD.

Vì ∆OAD = ∆OBC (câu a)

Nên ˆA2=ˆB2A^2=B^2 (hai góc tương ứng)

Mà ˆA1+ˆA2=180oA^1+A^2=180oˆB1+ˆB2=180oB^1+B^2=180o (kề bù)

Do đó ˆA1=ˆB1A^1=B^1.

Mặt khác, OA = OB, OC = OD

Suy ra OC – OA = OD – OB

Do đó AC = BD

Xét ∆EAC và ∆EBD có:

ˆA1=ˆB1A^1=B^1 (cmt);

AC = BD (cmt);

ˆOCB=ˆODAOCB^=ODA^ (vì ∆OAD = ∆OBC)

Do đó ∆EAC = ∆EBD (g.c.g).

c) Chứng minh: OE là tia phân giác của góc xOy.

Vì ∆EAC = ∆EBD (câu b)

Nên AE = BE (hai cạnh tương ứng).

Xét ∆OAE và ∆OBE có:

OA = OB (gt);

Cạnh OE chung;

AE = BE (cmt)

Do đó ∆OAE và ∆OBE (c.c.c)

Suy ra ˆAOE=ˆBOEAOE^=BOE^ (hai góc tương ứng)

Hay OE là phân giác của góc xOy.