Tìm số tự nhiên n có 4 chữ số sao cho khi chia n cho 131 thì dư 112, còn khi chia n cho 132 thì dư 98
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là n. Vì n chia 131 dư 112 nên:
n=131*k +112 (k thuộc N*)
<=> n=131*k+k+112-k
<=> n=132*k +(112 -k)
Mặt khác n chia 132 dư 98 nên n=132*k +98
=> 98=112 - k
<=> k=14
=> n=131*14+112=1946
Vậy số cần tìm là 1946
Số cần tìm là n. Vì n chia 131 dư 112 nên:
n=131*k +112 (k thuộc N*)
<=> n=131*k+k+112-k
<=> n=132*k +(112 -k)
Mặt khác n chia 132 dư 98 nên n=132*k +98
=> 98=112 - k
<=> k=14
=> n=131*14+112=1946
Vậy số cần tìm là 1946
Bấm vô đây:
Câu hỏi của vipboyss5 - Toán lớp 6 - Học toán với OnlineMath
ở đây tôi viết cái đường link olm lại ko cho đăng
bạn chưa biết cái đường link ạ
A=131k+112
A=132n+98
131k+112=132n+98
k=n+(n-14)/131
n=131t+14
vaoi A bốn chữ số n=> t=0n=14
=> A=131*14+112=1946
sao nhí? duyệt lâu thế chẳng hiểu gửi từ 9:20 rồi mà
Ban lam the khong dung dau dap so dung nhung vo tinh trung thoi
lời giải chi tiết
A=131k+112
A=132n+98
\(131k+112=132n+98\Rightarrow k=\frac{132n+98-112}{131}=n+\frac{n-14}{131}\)
\(\Rightarrow\frac{n-14}{131}=t=>n=131t+14\)
\(A< 9999=>n< \frac{9999-98}{131}=\approx75,5\)
\(\Rightarrow t=0\Rightarrow n=14\Rightarrow A=132\cdot14+98=1946\)
Ta có 131x + 112 = 132y + 98
⇒ 131x = 131y + y - 14 ⇒ y - 14 ⋮ 131 ⇒ y = 131k + 14 (k ∈ N)
⇒ n = 132. (131k + 14) + 98 = 132. 131k + 1946.
Do n có bốn chữ số nên k = 0, n = 1946
Vào đây nha : Câu hỏi của vipboyss5 - Toán lớp 6 - Học toán với OnlineMath
Link đây :..........................
https://olm.vn/hoi-dap/detail/9199360471.html
Hk tốt
Gọi X là số phải tìm, theo giả thiết ta có :
( x - 112 ) chia hết cho 131 và ( x - 98 ) chia hết cho 132
Từ kết quả suy luận trên lập tỉ số ta có :
( x - 112 ) / ( x - 98 ) = 131 / 132
Nhân chéo ta có :
( x - 112 ) . 132 = ( x - 98 ) x 131
=> 132x - 14784 = 131x - 12838
=> 132x - 131x = 14784 - 12838
=> x = 1946
Vậy số phải tìm là : 1946