Bài 2: Cho tam giác ABC có góc A = 90 độ. Kẻ trong góc A các tia à VUÔNG GÓC VỚI ab Và Ay vuông góc với AC. Trên tia Ax lấy D: AD = AB và trên tia Ay lấy E sao cho AE = AC. Hãy so sánh CD và BE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ∆ABC và ∆ADE :
AB = AD(gt)
Góc BAC = góc EAD (cùng phụ với gócCAD )
AC = AE (gt)
=>∆ABC = ∆ADE (c - g - c)
=> BC = DE
=> AM = BC/2 = DE/2
k cho mk nha
chúc bn trung thu vui vẻ
HT
Câu hỏi của Phạm Tuấn Kiệt - Toán lớp 7 - Học toán với OnlineMath
GT | ΔABC, \(\widehat{A}< 90^o\)
Ax ⊥ AB, AD = AB
Ay ⊥ AC, AE = AC
KL | a, BE=CD
b, BE ⊥ CD
Giải:
a, Vì Ay ⊥ AB
⇒ A1 = 90o <1>
Ax ⊥ AC
⇒ A2 = 90o <2>
Từ <1>,<2> ⇒ A1=A2
Mà \(\widehat{DAC}\) = \(\widehat{A_1}+ \widehat{A_3}\);
\(\widehat{EAC} = \widehat{A_2} + \widehat{A_3}\).
⇒ \(\widehat{DAC}\) = \(\widehat{EAC}\)
Xét ΔDAC và ΔEAB có:
AD = AB (gt)
A1= A2= \(90^o\)
AE =AC (gt)
⇒ ΔDAC = ΔEAB(c.g.c)
b, Vì ΔDAC = ΔEAB(CMT)
⇒ BE⊥ CD( 2 cạnh tương ứng)
Chức bạn học tốt nha!
mới học lớp 6