K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Hình thang ABCD cân có AB // CD

⇒ ∠ D =  ∠ C = 60 0

DB là tia phân giác của góc D

⇒  ∠ (ADB) =  ∠ (BDC)

∠ (ABD) =  ∠ (BDC) (hai góc so le trong)

Suy ra:  ∠ (ADB) =  ∠ (ABD)

⇒ ∆ ABD cân tại A ⇒ AB = AD (1)

Từ B kẻ đường thẳng song song với AD cắt CD tại E

Hình thang ABED có hai cạnh bên song song nên AB = ED, AD= BE (2)

∠ (BEC) =  ∠ (ADC) (đồng vị )

Suy ra:  ∠ (BEC) =  ∠ C = 60 0

⇒ ∆  BEC đều ⇒ EC = BC (3)

AD = BC (tính chất hình thang cân) (4)

Từ (1), (2), (3) và (4) ⇒ AB = BC = AD = ED = EC

⇒ Chu vi hình thang bằng:

AB + BC + CD + AD = AB + BC + EC + ED + AD = 5AB

⇒AB = BC = AD = 20 : 5 = 4 (cm)

CD = CE + DE = 2 AB = 2.4 = 8 (cm)

24 tháng 8 2017

Bạn nào trả lời đc mình k nhé cảm ơn mọi người trcs ạ

24 tháng 8 2017

+ Xét tam giác BCD

^CBD=180-^BCD-^BDC=180-60-30=90

=> tam giác BCD vuông tại B => BC=CD/2 (Trong tam giác vuông cạnh đối diện góc 30 độ =1/2 cạnh huyền) => CD=2.BC (1)

+ AB//CD => ^ABC+^BCD=^ABC+60=180 (Hai đường thẳng // bị cắt bởi 1 cát tuyến thì hai góc trong bù nhau)

=> ^ABC=180-60=120 => ^ABD=^ABC-^CBD=120-90=30

+ Xét tam giác ABD có ^ADB=^ABD=30 => t/g ABD cân tại A => AD=AB (2)

+ Do hình thang ABCD cân => AD=BC (3)

+ Chu vi hình thang = AB+BC+CD+AD (4)

Từ (1) (2) (3) (4) => CV hình thang ABCD=5.BC=20 cm

=> BC=20:5=4 cm

=> AB=BC=AD=4 cm

CD=2.BC=2.4=8 cm

60*

19 tháng 6 2017

A B C D

+ Xét tam giác BCD

^CBD=180-^BCD-^BDC=180-60-30=90

=> tam giác BCD vuông tại B

=> BC=CD/2 (Trong tam giác vuông cạnh đối diện góc 30 độ =1/2 cạnh huyền)

=> CD=2.BC (1) + AB//CD

=> ^ABC+^BCD=^ABC+60=180 (Hai đường thẳng // bị cắt bởi 1 cát tuyến thì hai góc trong bù nhau)

=> ^ABC=180-60=120

=> ^ABD=^ABC-^CBD=120-90=30

+ Xét tam giác ABD có

^ADB=^ABD=30

=> t/g ABD cân tại A => AD=AB (2)

+ Do hình thang ABCD cân

=> AD=BC (3)

+ Chu vi hình thang = AB+BC+CD+AD (4)

Từ (1) (2) (3) (4) => CV hình thang ABCD=5.BC=20 cm

=> BC=20:5=4 cm

=> AB=BC=AD=4 cm

CD=2.BC=2.4=8 cm 

^ như này là góc nhé

29 tháng 6 2017

Hình thang cân

5 tháng 9 2021

\(\widehat{ABD}=\widehat{BDC}\left(SLT\right);\widehat{ADB}=\widehat{BDC}\left(GT\right)\\ \Rightarrow\widehat{ABD}=\widehat{ADB}\Rightarrow AD=AB=BC=4\left(cm\right)\)

(tam giác \(ADB\) cân tại \(A\))

Vì là h.thang cân mà có: BD là phân giác \(\widehat{D}\) nên AC cũng là phân giác \(\widehat{C}\) \(\Rightarrow\widehat{ACB}=\widehat{ACD}\)

Dễ thấy các góc bằng nhau: \(\widehat{BAC}=\widehat{ADB}=\widehat{BDC}=\widehat{ACD}=\widehat{ACB}=\widehat{ABD};\widehat{DBC}=\widehat{DAC}=90\)

\(\Rightarrow6\widehat{BDC}+90+90=360\Rightarrow\widehat{BDC}=30\)

\(\sin\widehat{BDC}=\dfrac{BC}{DC}\Rightarrow DC=\dfrac{BC}{\sin\widehat{BDC}}=\dfrac{4}{\sin30}=8\left(cm\right)\)

\(\Rightarrow P_{ABCD}=4+4+8+4=20\left(cm\right)\)

 

5 tháng 9 2021

Vì AB // DC => góc ABD = góc BDC

Mà góc ADB = góc BDC ( DB là phân giác ADC )

=> góc ABD = góc ADB

=> tam giác ADB cân tại A

=> AD = AB = 4 (cm)

Mà ABCD là hình thang cân 

=> AD = BC = 4 (cm)

Có : góc BDC = 1/2 góc ADC

mà góc ADC = góc BCD ( ABCD là hình thang cân )

=> góc BDC = 1/2 góc BCD => góc BCD = 2 . BDC

Xét tam giác BCD vuông tại B có

BDC + BCD = 90

<=> BDC + 2BDC = 90

<=> BDC = 30

mà BC là cạnh đối diện góc BDC

=> BC = 1/2 BD

Hay 4 = 1/2 BD

=> BD = 8 (cm)

Áp dụng ĐL Pytago vào tam giác BDC vuông tại B được

BC2 + DC2 = BD2

<=> DC = \(\sqrt{BD^2-BC^2}\)

<=> DC= \(\sqrt{8^2-4^2}=4\sqrt{3}\)

Vậy chu vi hình thang ABCD là

AB + BC + CD + AD = 4 + 4 + 4\(\sqrt{3}\) + 4 =12 + 4\(\sqrt{3}\) ( cm )