Một hình nón tròn xoay có thiết diện qua trục là một tam giác vuông cân có cạnh bằng a. Một mặt phẳng đi qua đỉnh tạo với mặt phẳng đáy một góc 60 ° . Tính diện tích thiết diện được tạo nên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Cạnh huyền chính bằng đường kính đáy do vậy bán kính đáy r = và đường cao h = r, đwòng sinh l = a.
Vậy Sxq = πrl = ( đơn vị diện tích)
Sđáy = = ( đơn vị diện tích);
Vnón = ( đơn vị thể tích)
b) Gọi tâm đáy là O và trung điểm cạnh BC là I.
Theo giả thiết, = 600.
Ta có diện tích ∆ SBC là: S = (SI.BC)/2
Ta có SO + SI.sin600 = .
Vậy .
Ta có ∆ OIB vuông ở I và BO = r = ;
OI = SI.cos600 = .
Vậy BI = và BC = .
Do đó S = (SI.BC)/2 = (đơn vị diện tích)
a) Cạnh huyền chính bằng đường kính đáy do vậy bán kính đáy r = và đường cao h = r, đwòng sinh l = a.
Vậy Sxq = πrl = ( đơn vị diện tích)
Sđáy = = ( đơn vị diện tích);
Vnón = ( đơn vị thể tích)
b) Gọi tâm đáy là O và trung điểm cạnh BC là I.
Theo giả thiết, = 600.
Ta có diện tích ∆ SBC là: S = (SI.BC)/2
Ta có SO + SI.sin600 = .
Vậy .
Ta có ∆ OIB vuông ở I và BO = r = ;
OI = SI.cos600 = .
Vậy BI = và BC = .
Do đó S = (SI.BC)/2 = (đơn vị diện tích)
Xét mặt phẳng (DAM) đi qua đỉnh D tạo với mặt phẳng đáy một góc 600, cắt đường tròn đáy tại hai điểm A và M. Từ tâm O của đường tròn đáy ta vẽ OH ⊥ AM, do vậy H là trung điểm của đoạn AM. Ta có AM ⊥ (DOH) vì AM ⊥ OH và AM ⊥ DO.
Vậy ∠ DHO = 60 ° và
hay
Gọi SΔ DAM là diện tích thiết diện cần tìm, ta có: S △ DAM = AH.DH
Mà
Vậy