Xác định hàm số bậc nhất y = ax + b trong mỗi trường hợp sau:
a = 2 và đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 1,5.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Với a = 2 hàm số có dạng y = 2x + b.
Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 1,5 khi đó tung độ bằng 0 nên:
0 = 2.1,5 + b => b = -3
Vậy hàm số là y = 2x – 3
b) Với a = 3 hàm số có dạng y = 3x + b.
Đồ thị hàm số đi qua điểm (2; 2), nên ta có:
2 = 3.2 + b => b = 2 – 6 = - 4
Vậy hàm số là y = 3x – 4
c) Đường thẳng y = ax + b song song với đường thẳng y = √3 x nên a = √3 và b ≠ 0. Khi đó hàm số có dạng y = √3 x + b
Đồ thị hàm số đi qua điểm (1; √3 + 5) nên ta có:
√3 + 5 = √3 . 1 + b => b = 5
Vậy hàm số là y = √3 x + 5
a) Hàm số đã cho là y = 2x + b.
Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.
Vậy hàm số đã cho là y = 2x - 3.
b) Hàm số đã cho là y = 3x + b.
Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.
Vậy hàm số đã cho là y = 3x - 4.
a) Hàm số đã cho là y = 2x + b.
Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.
Vậy hàm số đã cho là y = 2x - 3.
b) Hàm số đã cho là y = 3x + b.
Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.
Vậy hàm số đã cho là y = 3x - 4.
a: Vì hệ số góc là 2 nên a=2
Thay x=0 và y=2 vào y=2x+b, ta được:
b+0=2
hay b=2
a) Hàm số đã cho là y = 2x + b.
Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.
Vậy hàm số đã cho là y = 2x - 3.
b) Hàm số đã cho là y = 3x + b.
Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.
Vậy hàm số đã cho là y = 3x - 4.
c) Vì đồ thị của hàm số đã cho song song với đường thẳng y = √3x nên nó có hệ số góc là a = √3. Do đó hàm số đã cho là y = √3x + b.
Vì đồ thị đi qua điểm B(1; √3 + 5) nên √3 + 5 = √3 . 1 + b. Suy ra b = 5.
Vậy hàm số đã cho là y = √3x + 5.
Bài giải:
a) Hàm số đã cho là y = 2x + b.
Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.
Vậy hàm số đã cho là y = 2x - 3.
b) Hàm số đã cho là y = 3x + b.
Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.
Vậy hàm số đã cho là y = 3x - 4.
c) Vì đồ thị của hàm số đã cho song song với đường thẳng y = √3x nên nó có hệ số góc là a = √3. Do đó hàm số đã cho là y = √3x + b.
Vì đồ thị đi qua điểm B(1; √3 + 5) nên √3 + 5 = √3 . 1 + b. Suy ra b = 5.
Vậy hàm số đã cho là y = √3x + 5
Hàm số y = ax - 4 là hàm số bậc nhất nên a ≠ 0
a) Đồ thị hàm số y = ax – 4 cắt đường thẳng y = 2x – 1 tại điểm có hoành độ bằng 2 nên thay x = 2 vào phương trình hoành độ giao điểm ta có:
2a – 4 = 2.2 – 1 ⇔ 2a = 7 ⇔ a = 3,5
Kết hợp với điều kiện trên ta thấy a = 3,5 là giá trị cần tìm.
b) Đồ thị hàm số y = ax – 4 cắt đường thẳng y = -3x + 2 tại điểm A có tung độ bằng 5 nên đường thẳng y = -3x + 2 đi qua điểm có tung độ bằng 5. Thay tung độ vào phương trình đường thẳng ta được hoành độ của giao điểm A là:
5 = -3x + 2 ⇔ - 3x = 3 ⇔ x = -1
Ta được A(-1; 5).
Đường thẳng y = ax – 4 cũng đi qua điểm A(-1; 5) nên ta có:
5 = a.(-1) – 4 ⇔ -a = 9 ⇔ a = -9
Kết hợp với điều kiện trên ta thấy a = -9 là giá trị cần tìm.
a) Đồ thị hàm số cắt Ox tại điểm có hoành độ bằng \(\dfrac{1}{3}\) \(\Rightarrow x=\dfrac{1}{3};y=0\)
\(\Rightarrow\dfrac{4}{3}\cdot\dfrac{1}{3}+b=0\) \(\Rightarrow b=-\dfrac{4}{9}\)
Vậy \(y=\dfrac{4}{3}x-\dfrac{4}{9}\)
b) Đồ thị hàm số đi qua \(A\left(-\dfrac{1}{2};\dfrac{3}{5}\right)\) \(\Rightarrow x=-\dfrac{1}{2};y=\dfrac{3}{5}\)
\(\Rightarrow\dfrac{2}{3}\cdot\dfrac{-1}{2}+b=\dfrac{3}{5}\) \(\Rightarrow b=\dfrac{14}{15}\)
Vậy \(y=\dfrac{2}{3}x+\dfrac{14}{15}\)
c) Vì đồ thị hàm số song song với đường thẳng \(y=\sqrt{3}x\)
\(\Rightarrow\left\{{}\begin{matrix}a=\sqrt{3}\\b\ne0\end{matrix}\right.\) \(\Rightarrow y=\sqrt{3}x+b\)
Vì đồ thị hàm số đi qua \(B\left(1;\sqrt{3}+5\right)\)
\(\Rightarrow\sqrt{3}\cdot1+b=\sqrt{3}+5\) \(\Rightarrow b=5\)
Vậy \(y=\sqrt{3}x+5\)
Với a = 2 hàm số có dạng y = 2x + b.
Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 1,5 khi đó tung độ bằng 0 nên:
0 = 2.1,5 + b => b = -3
Vậy hàm số là y = 2x – 3