Cho đường tròn (O) đường kính AB = 13 cm, dây CD có độ dài 12 cm vuông góc với AB tại H
a, Tính độ dài các đoạn thẳng HA, HB
b, Gọi M, N lần lượt là hình chiếu của H trên AC, BC. Tính diện tích tứ giác CMHN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có:
AO=OB=OD = 13:2=7,5 cm
Theo Py-ta-go suy ra:\(OH=\sqrt{7,5^2-6^2}=4,5cm\)
Do đó:
AH = AO-OH = 7,5-4,5 = 3 cm
HB = OH + OB = 4,5+7,5 = 12 cm
b)Dễ thấy tứ giác CMHN là hcn (do có 3 góc vuông)
Ta có:
+Theo Py-ta-go: \(AC=\sqrt{AH^2+HC^2}=3\sqrt{5}cm\)
+Hệ thức lượng trong tam giác:\(CH^2=CM.AC\)suy ra \(CM=\frac{12\sqrt{5}}{5}cm\)
+Hệ thức lượng trong tam giác:\(\frac{1}{MH^2}=\frac{1}{AH^2}+\frac{1}{CH^2}\)
Suy ra \(MH=\frac{6\sqrt{5}}{5}cm\)
Vậy S(CMHN) = CM.MH = 14,4 CM^2
Bạn tự vẽ hình.
a) CD vuông góc AB => CH = DH = 6. Ta có: HA.HB = CH2 \(\Rightarrow HA\left(13-HA\right)=36\Leftrightarrow HA^2-13HA+36=0\)
\(\Leftrightarrow\left(HA-9\right)\left(HA-4\right)=0\Leftrightarrow\)HA = 9 hoặc HA = 4 => HB = 4 hoặc HB = 9
Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{BD}{4}=\dfrac{CD}{6}\)
mà BD+CD=BC=4cm(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{4}=\dfrac{CD}{6}=\dfrac{BD+CD}{4+6}=\dfrac{4}{10}=\dfrac{2}{5}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{BD}{4}=\dfrac{2}{5}\\\dfrac{CD}{6}=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=\dfrac{8}{5}cm\\CD=\dfrac{12}{5}cm\end{matrix}\right.\)
Vậy: \(BD=\dfrac{8}{5}cm;CD=\dfrac{12}{5}cm\)
a, Tính được HA=4cm; HB=9cm
b, Tính được HA=4cm; HB=9cm
c, Tính được HM = 12 13 13 cm, HN = 18 13 13 cm
Từ đó tính được S C M H N = 216 13 c m 2