cho p là số nguyên tố lớn hơn 3.Chứng minh (p+5).(p+7) chia hết cho 24.
CHO mình cách giải chi tiết nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có a2 - 1 = (a+1)(a-1)
Xét tích (a-1)a(a+1) chia hết cho 3
Do a là số ng tố > 3 nên a không chia hết cho 3
=> (a-1)(a+1) chia hết cho 3 (1)
Có a là số lẻ, đặt a = 2k + 1
Do vậy a2 - 1 = 4k(k+1)
Có k(k+1) luôn chia hết cho 2 => ak(k+1) chia hết cho 8 (2)
Từ (1) và (2) suy ra a2 - 1 chia hết cho 24 ( vì (3;8) =1 )
+) Vì (p+5).(p+7)là 2 số tự nhiên chẵn liên tiếp nên (p+5).(p+7) chia hết cho 8 (*)
+) Vì p >3, p là số nguyên tố nên p=3k+1, p=3k+2
Nếu p=3k+1 thì (p+5).(p+7)=(3k+6).(3k+8)
=3.(k+2).(3k+8) chia hết cho3 ( t/mãn )(1)
Nếu p=3k+2 thì (p+5).(p+7)=(3k+7).(3k+9)
=(3k+7).3.(k+3) chia hết cho 3 (t/mãn)(2)
Từ (1)và (2) suy ra (p+5).(p+7) chia hết cho 3 (**)
Từ (*) và (**) suy ra điều phải chứng minh
Đặt A = (p+5).(p+7)
p nguyên tố > 3 nên p ko chia hết cho 3
+, Nếu p chia 3 dư 1 => p+5 chia hết cho 3 => A chia hết cho 3 (1)
+, Nếu p chia 3 dư 2 => p+7 chia hết cho 3 => A chia hết cho 3 (2)
Từ (1);(2) => A chia hết cho 3 (*)
p nguyên tố > 3 nên p lẻ => p = 2k+1 ( k thuộc N )
=> A = (2k+6).(2k+8) = 4.(k+3).(k+4)
Ta thấy : k+3;k+4 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 => (k+3).(k+4) chia hết cho 2
=> A chia hết cho 8 (**)
Từ (*) và (**) => A chia hết cho 24 ( vì 3 và 8 là 2 số nguyên tố cùng nhau )
=> ĐPCM
Tk mk nha
Vì p là số nguyên tố lớn hơn 3 nên p có dạng là : a.3+1 hoặc b.3+2 và p là số lẻ ( nếu p là chẵn thì p là hợp số)
+, nếu p = a.3+1 thì p+5 * 3 => (p+5)(p+7)*3
+, nếu p = b.3+2 thì p+7*3 => (p+5)(p+7) * 3
vì p là lẻ nên p+5 và p+7 là hai số chẵn liên tiếp => (p+5)(p+7)*8
vậy (p+5)(p+7)* 3.8 = 24 với p là số nguyên tố lớn hơn 3
dấu * là dấu chia hết nha!