So sánh: 1998/1999+1999/2000 va 1998+1999/1999+2000
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=1998/1999+1999/2000
B=1998+1999/1999+2000
=1998/1999+2000 + 1999/1999+2000
Vì 1998/1998>1998/1999+2000
1999/2000>1999/1999+2000
Nên A>B
ta thấy 19991999 + 1 / 19992000 + 1 < 1 và 1998 > 0
nên ta có: A < 19991999 + 1 + 1998 / 19992000 + 1 + 1998
< 19991999 + 1999 / 19992000 + 1999
< 1999(19991998 + 1) / 1999(19991999 + 1)
< 19991998 + 1 / 19991999 + 1
< B
Vậy A < B
A=1998.2000=1998.(1999+1)=1998.1999+1998
1999.1999=1998.1999+1999
=>A<B
vậy A<B
1999x2000-2/1998x1999+3997
=1999x(1998+2)-2/1998x1999+3997
=1999x1998+3998-2/1998x1999+3997
=1999x1998+3996/1998x1999+3997
=3996/3997
=> 3996/3997 < 1
Vậy 1999x2000-2/1998x1999+3997 < 1
ta có: \(A=\frac{1999^{1999}+1}{1999^{1998}+1}=\frac{1999.\left(1999^{1998}+1\right)-1998}{1999^{1998}+1}=\frac{1999.\left(1999^{1998}+1\right)}{1999^{1998}+1}-\frac{1998}{1999^{1998}+1}\)
\(=1999-\frac{1998}{1999^{1998}+1}\)
\(B=\frac{1999^{2000}+1}{1999^{1999}+1}=\frac{1999.\left(1999^{1999}+1\right)-1998}{1999^{1999}+1}=\frac{1999.\left(1999^{1999}+1\right)}{1999^{1999}+1}-\frac{1998}{1999^{1999}+1}\)
\(=1999-\frac{1998}{1999^{1999}+1}\)
mà \(\frac{1998}{1999^{1998}+1}>\frac{1998}{1999^{1999}+1}\Rightarrow1999-\frac{1998}{1999^{1998}+1}< 1999-\frac{1998}{1999^{1999}+1}\)
\(\Rightarrow A< B\)
Đặt A=1998/1999+1999/2000 B=1998+1999/1999+2000 =1998/1999+2000 + 1999/1999+2000 Vì 1998/1998>1998/1999+2000 1999/2000>1999/1999+2000 Nên A>B