K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(1)

Xét ΔADC có 

Q là trung điểm của AD

P là trung điểm của CD

Do đó: QP là đường trung bình của ΔADC

Suy ra: QP//AC và \(QP=\dfrac{AC}{2}\)(2)

Từ (1) và (2) suy ra MN//QP và MN=QP

Xét tứ giác MNPQ có 

MN//QP(cmt)

MN=QP(cmt)

Do đó: MNPQ là hình bình hành

Xét ΔABD có 

Q là trung điểm của AD

M là trung điểm của AB

Do đó: QM là đường trung bình của ΔABD

Suy ra: QM//DB và \(QM=\dfrac{DB}{2}\)

hay \(QM=\dfrac{AC}{2}\)(3)

Từ (2) và (3) suy ra QM=QP

Hình bình hành MNPQ có QM=QP(cmt)

nên MNPQ là hình thoi

4 tháng 4 2021

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

17 tháng 12 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Kẻ đường chéo MP và NQ

Trong  △ MNP ta có:

X là trung điểm của MN

Y là trung điểm của NP

nên XY là đường trung bình của  △ MNP

⇒ XY // MP và XY = 1/2 MP (tính chất đường trung bình của tam giác) (3)

Trong  △ QMP ta có:

T là trung điểm của QM

Z là trung điểm của QP

nên TZ là đường trung bình của  △ QMP

⇒ TZ // MP và TZ = 1/2 MP (tính chất đường trung bình của tam giác) (4)

Từ (3) và (4) suy ra: XY // TZ và XY = TZ nên tứ giác XYZT là hình bình hành.

Trong △ MNQ ta có XT là đường trung bình

⇒ XT = 1/2 QN (tính chất đường trung bình của tam giác)

Tứ giác MNPQ là hình chữ nhật ⇒ MP = NQ

Suy ra: XT = XY. Vậy tứ giác XYZT là hình thoi

S X Y Z T  = 1/2 XZ. TY

mà XZ = MQ = 1/2 BD = 1/2. 8 = 4 (cm);

TY = MN = 1/2 AC = 1/2 .6 =3 (cm)

Vậy : S X Y Z T  = 1/2. 3. 4 = 6( c m 2 )

29 tháng 10 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Trong  △ ABD ta có:

M là trung điểm của AB

Q là trung điểm của AD nên MQ là đường trung bình của  △ ABD.

⇒ MQ // BD và MQ = 1/2 BD (tính chất đường trung bình của tam giác) (1)

Trong  △ CBD ta có:

N là trung điểm của BC

P là trung điểm của CD

nên NP là đường trung bình của  △ CBD

⇒ NP // BD và NP = 1/2 BD (tính chất đường trung bình của tam giác) (2)

Từ (1) và (2) suy ra: MQ // NP và MQ = NP nên tứ giác MNPQ là hình bình hành

AC ⊥ BD (gt)

MQ // BD

Suy ra: AC ⊥ MQ

Trong △ ABC có MN là đường trung bình ⇒ MN // AC

Suy ra: MN ⊥ MQ hay (NMQ) = 90 0

Vậy tứ giác MNPQ là hình chữ nhật.