K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2019

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi I là trung điểm của đoạn AA’. Ta có IO // Δ nên tâm O di động trên đường thẳng d cố định đi qua I và song song với ∆ . Mặt cầu tâm O đi qua hai điểm cố định A, A’ , có tâm di động trên đường trung trực d cố định của đoạn AA’. Vậy mặt cầu tâm O luôn luôn chứa đường tròn cố định tâm I có đường kính AA’ nằm trong mặt phẳng AA’ và vuông góc với d.

27 tháng 12 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Theo giả thiết ta có: ∠A′M′M = ∠A′AM = ∠A′M1M = 90o

Do đó 5 điểm A, A’, M, M’, M1 cùng thuộc mặt cầu (S) tâm O, với O là trung điểm của A’M và có bán kính r = A′M2

Mặt khác ta có A’M2 = A’A2 + AM2

Trong đó

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Mặt cầu tâm O có bán kính

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Diện tích của mặt cầu tâm O là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

19 tháng 12 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì mặt phẳng (P) qua A và vuông góc với Δ′ nên AA’ thuộc (P). Vì M thuộc  ∆  mà d là hình chiếu vuông góc của  ∆  trên (P) nên M 1 thuộc d. Vì MA ⊥ AA′ ⇒  M 1 A  ⊥  AA′

Mặt khác  M 1 A  ⊥  M′A′ nên ta suy ra  M 1 A  ⊥  (AA′M′). Do đó  M 1 A  ⊥  M′A và điểm A thuộc mặt cầu đường kính M’ M 1

Ta có M′A′  ⊥  (P) nên M′A′  ⊥  A′ M 1 , ta suy ra điểm A’ cũng thuộc mặt cầu đường kính M’ M 1

Ta có (Q) // (P) nên ta suy ra

M M 1  ⊥ (Q) mà MM’ thuộc (Q), do đó  M 1 M  ⊥  MM′

Như vậy 5 điểm A, A’, M, M’,  M 1  cùng thuộc mặt cầu (S) có đường kính M’ M 1 . Tâm O của mặt cầu (S) là trung điểm của đoạn M’ M 1

Ta có M ' M 1 2 = M ' A ' 2 + A ' M 1 2  = M ' A ' 2 + A ' A 2 + AM 1 2 = x 2 + a 2 + x 2 cot 2 α vì M M 1  = x

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bán kính r của mặt cầu (S) bằng (M′ M 1 )/2 nên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

25 tháng 4 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hình tứ giác A’M’M M 1  là hình chữ nhật nên tâm O cũng là trung điểm của A’M. Do đó khi x thay đổi thì mặt phẳng (Q) thay đổi và điểm O luôn luôn thuộc đường thẳng d’ đi qua trung điểm I của đoạn AA’ và song song với đường thẳng  ∆ . Vì mặt cầu tâm O luôn luôn đi qua hai điểm cố định A, A’nên nó có tâm O di động trên đường thẳng d’. Do đó mặt cầu tâm O luôn luôn chứa đường tròn tâm I cố định có đường kính AA’ cố định và nằm trong mặt phẳng cố định vuông góc với đường thẳng d’.

6 tháng 12 2017

a) Sai

Sửa lại: "Đường thẳng Δ là đường thẳng vuông góc chung của hai đường thẳng chéo nhau a và b nếu Δ cắt cả a và b, đồng thời Δ ⊥ a và Δ ⊥ b"

b) Đúng

c) Đúng

d) Sai

Sửa lại: Đường thẳng đi qua M trên a và vuông góc với a, đồng thời cắt b tại N và vuông góc với b thì đó là đường vuông góc chung của a và b.

e) Sai.

16 tháng 2 2017

Mặt phẳng  α  chứa A và trục Oy nên có một VTPT là 

Đường thẳng  là giao tuyến của  α  và  β  nên có VTCP 

Theo giả thiết, ta có  u ∆ →  cùng phương với 

Suy ra 

Chọn C.

Trong các mệnh đề sau đây, mệnh đề nào là đúng ? a) Đường thẳng \(\Delta\) là đường vuông góc chung của hai đường thẳng a và b nếu \(\Delta\) vuông góc với a và  \(\Delta\) vuông góc với b b) Gọi (P) là mặt phẳng song song với cả hai đường thẳng a, b chéo nhau. Khi đó đường vuông góc chung \(\Delta\) của a và b luôn luôn vuông góc với (P) c) Gọi \(\Delta\) là đường vuông góc chung của hai...
Đọc tiếp

Trong các mệnh đề sau đây, mệnh đề nào là đúng ?

a) Đường thẳng \(\Delta\) là đường vuông góc chung của hai đường thẳng a và b nếu \(\Delta\) vuông góc với a và  \(\Delta\) vuông góc với b

b) Gọi (P) là mặt phẳng song song với cả hai đường thẳng a, b chéo nhau. Khi đó đường vuông góc chung \(\Delta\) của a và b luôn luôn vuông góc với (P)

c) Gọi \(\Delta\) là đường vuông góc chung của hai đường thẳng chéo nhau a và b thì \(\Delta\) là giao tuyến của hai mặt phẳng \(\left(a,\Delta\right)\) và \(\left(b;\Delta\right)\)

d) Cho hai đường thẳng chéo nhau a và b. Đường thẳng nào đi qua một điểm M trên a đồng thời cắt b tại N và vuông góc với b thì đó là đường vuông góc chung của a và b

e) Đường vuông góc chung \(\Delta\) của hai đường chéo nhau a và b nằm trong mặt phẳng chứa đường này và vuông góc với đường kia

1
31 tháng 3 2017

a) Sai, đúng là "Đường thẳng Δ là đường thẳng vuông góc chung của hai đường thẳng chéo nhau a và b nếu Δ cắt cả a và b, đồng thời Δ ⊥a và Δ ⊥b"

b) Đúng

c) Đúng

d) Sai

e) Sai

8 tháng 1 2019

Câu a) đúng. Khoảng cách của hai đường thẳng chéo nhau là đoạn ngắn nhất trong các đoạn thẳng nối hai điểm bất kì nằm trên hai đường thẳng ấy và ngược lại (xem mục c). Tính chất của khoảng cách giữa hai đường thẳng chéo nhau (Bài 5 – chương III).

Câu b) sai. Qua một điểm có vô số mặt phẳng vuông góc với một mặt phẳng cho trước.

Câu c) sai. Vì trong trường hợp đường thẳng vuông góc với mặt phẳng thì ta có vô số mặt phẳng vuông góc với mặt phẳng cho trước vì bất kì mặt phẳng nào chứa đường thẳng cũng đều vuông góc với mặt phẳng cho trước. Để có khẳng định đúng ta phải nói: Qua một đường thẳng không vuông góc với một mặt phẳng có duy nhất một mặt phẳng vuông góc với mặt phẳng đã cho.

Câu d) sai. Vì đường vuông góc chung của hai đường thẳng phải cắt cả hai đường ấy.

15 tháng 7 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Mặt phẳng (AA', BB') xác định bởi hai đường thẳng song song (AA', BB') cắt mặt phẳng (α) theo giao tuyến qua O, A', B'. Do đó ba điểm O, A', B' thẳng hàng.

Hai tam giác vuông OAA'và OBB' bằng nhau vì có một cạnh huyền và một góc nhọn bằng nhau nên từ đó ta suy ra AA' = BB'.

31 tháng 3 2017

Câu a) đúng. Khoảng cách của hai đường thẳng chéo nhau là đoạn ngắn nhất trong các đoạn thẳng nối hai điểm bất kì nằm trên hai đường thẳng ấy và ngược lại (xem mục c). Tính chất của khoảng cách giữa hai đường thẳng chéo nhau (Bài 5 – chương III).

Câu b) sai. Qua một điểm có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước.

Câu c) sai. Vì trong trường hợp đường thẳng vuông góc với mặt phẳng thì ta có vô số mặt phẳng vuông góc với mặt phẳng cho trước vì bất kì mặt phẳng nào chứa đường thẳng cũng đều vuông góc với mặt phẳng cho trước. Để có khẳng định đúng ta phải nói: Qua một đường thẳng không vuông góc với một mặt phẳng có duy nhất một mặt phẳng vuông góc với mặt phẳng đã cho.

Câu d) sai. Vì đường vuông góc chung của hai đường thẳng phải cắt cả hai đường ấy.