K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2019

11 tháng 6 2017

23 tháng 9 2019

ta có: xy+x+y = 3

=> xy +x +y +1 =4

=> (x+1).(y+1) = 4 (1)

tương tự, ta có: (y+1).(z+1)= 9 (2)

(x+1).(z+1) = 16 (3)

Nhân (1);(2);(3) lại vs nhau

được: \([\left(x+1\right).\left(y+1\right).\left(z+1\right)]^2=576=24^2=\left(-24\right)^2.\)

TH1: (x+1).(y+1).(z+1) = 24

=> 4.(z+1)=24

=> z+1 = 6 => z = 5

mà yz +y +z = 8

=> 6y + 5 = 8 => y = 1/2

mà xz+z+x = 15

=> 6x + 5 = 15 => x = 5/3

=> P =  5/3 +1/2 + 5 = 43/6

TH2: (x+1).(y+1).(z+1) = -24

...

bn cũng lm tương tự như TH1 nha!

14 tháng 11 2018

a, Ta có \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

(=) \(\frac{b}{ab}-\frac{a}{ab}=\frac{1}{a-b}\)

(=) \(\frac{b-a}{ab}=\frac{1}{a-b}\)

(=) \(\left(b-a\right).\left(a-b\right)=ab\)

Vì a,b là 2 số dương

=> \(\hept{\begin{cases}ab>0\left(1\right)\\\left(b-a\right).\left(a-b\right)< 0\left(2\right)\end{cases}}\) 

Từ (1) và (2) => Không tồn tại hai số a,b để \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

14 tháng 11 2018

b, Cộng vế với vế của 3 đẳng thức ta có :

\(x+y+y+z+x+z=-\frac{7}{6}+\frac{1}{4}+\frac{1}{12}\)

(=) \(2.\left(x+y+z\right)=-\frac{5}{6}\)

(=) \(x+y+z=\frac{-5}{12}\)

Ta có : \(x+y+z=\frac{-5}{12}\left(=\right)-\frac{7}{6}+z=-\frac{5}{12}\left(=\right)z=\frac{3}{4}\)

Lại có \(x+y+z=\frac{-5}{12}\left(=\right)x+\frac{1}{4}=-\frac{5}{12}\left(=\right)x=-\frac{2}{3}\)

Lại có \(x+y+z=-\frac{5}{12}\left(=\right)y+\frac{1}{12}=-\frac{5}{12}\left(=\right)y=\frac{-1}{2}\)

5 tháng 4 2019

Đường thẳng x là đường thẳng số (2). Đường thẳng y là đường thẳng số (1). Đường thẳng z là đường thẳng số (3)

21 tháng 7 2019

Đáp án C.