K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2019

19 tháng 2 2021

từ a+b/b+c=c+d/d+a=>ad+a^2+bd+ab=bc+bd+c^2+cd

=>ad+ab+a^2-bc-cd-c^2=0

=>ad-cd+ab-bc+a^2-c^2=0

=>(a-c)d+(a-c)b+(a-c)(a+c)=0

=>(a-c)(a+b+c+d)=0

=>a-c=0 hoặc a+b+c+d=0

=>a=c hoặc a+b+c+d=0   (đpcm)

14 tháng 7 2016

\(\left(a+b\right)\left(d+a\right)=\left(c+d\right)\left(b+c\right)\)

\(ad+a^2+bd+ab=bc+bd+c^2+cd\)

\(a\left(b+d\right)+a^2=c\left(b+d\right)+c^2\)

\(a+a^2=c+c^2\)

\(a=c\)

Ta có:\(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)

\(\implies\)\(\frac{a+b}{c+d}=\frac{b+c}{d+a}\)

\(\implies\) \(\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1\)

\(\implies\) \(\frac{a+b+c+d}{c+d}=\frac{a+b+c+d}{d+a}\)

\(\implies\) \(\frac{a+b+c+d}{c+d}-\frac{a+b+c+d}{d+a}=0\)

\(\implies\) \(\left(a+b+c+d\right)\left(\frac{1}{c+d}-\frac{1}{d+a}\right)=0\)

\(\implies\)\(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}-\frac{1}{d+a}=0\end{cases}}\)

\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}=\frac{1}{d+a}\end{cases}}\)

\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\c+d=d+a\end{cases}}\)

\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\c=a\end{cases}}\)

7 tháng 3 2020

ta có \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)

=>\(\left(a+b\right)\left(a+d\right)=\left(c+d\right)\left(b+c\right)\)

=> \(a^2+ab+ad+bd=c^2+bc+bd+cd\)

=>\(a^2+ab+ad-bc-c^2-cd=0\)

=>\(\left(a^2-c^2\right)+\left(ab-cd\right)+\left(ab-ac\right)=0\)

=>\(\left(a-c\right)\left(a+c\right)+d\left(a-c\right)+b\left(a-c\right)=0\)

=>\(\left(a-c\right)\left(a+b+c+d\right)=0\)

=>\(\orbr{\begin{cases}a-c=0\\a+b+c+d=0\end{cases}\left(dpcm\right)}\)

hacker 2k6

Áp dụng tính chất dãy tỉ số bằng  nhau ta có

\(\frac{a+b}{b+c}=\frac{c+d}{c+a}=\frac{a+b+c+d}{a+b+c+d}\)

\(\Rightarrow\orbr{\begin{cases}a+b+c+d=0\\a=c\end{cases}}\)

Sửa đề:

Ta có: \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)

\(\Rightarrow\frac{a+b}{c+d}=\frac{c+b}{d+a}\)

\(\Rightarrow\frac{a+b}{c+d}+1=\frac{c+b}{d+a}+1\)

\(\Rightarrow\frac{a+b+c+d}{c+d}=\frac{c+d+b+d+c}{d+a}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a+b+c+d}{c+d}=\frac{c+d+b+a}{d+a}=\frac{\left(a+b+c+d\right)-\left(c+d+b+c\right)}{\left(c+d\right)-\left(d+a\right)}=\frac{0}{\left(c+d\right)-\left(d+a\right)}=0\)

\(\Rightarrow\frac{a+b+c+d}{c+d}=0\)

Vì \(c+d\ne0\)

\(\Rightarrow a+b+c+d=0\left(đpcm\right)\)

và \(\frac{a+b+c+d}{c+d}-\frac{c+d+b+a}{d+a}=0\)

vd Thay a + b+ c= 1

ta có: \(\frac{1}{c+d}-\frac{1}{d+a}=0\)

\(\Rightarrow\frac{1}{c+d}=\frac{1}{d+a}\)

\(\Rightarrow d+a=c+d\)

\(\Rightarrow a=c\left(đpcm\right)\)

hok tốt!!

Ta có: \(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)

\(\Leftrightarrow\left(a+d\right)^2-\left(b+c\right)^2=\left(a-d\right)^2-\left(b-c\right)^2\)

\(\Leftrightarrow\left(a+d-a+d\right)\left(a+d+a-d\right)=\left(b+c-b+c\right)\left(b+c+b-c\right)\)

\(\Leftrightarrow2d\cdot2a=2c\cdot2b\)

\(\Leftrightarrow ad=bc\)

hay \(\dfrac{a}{c}=\dfrac{b}{d}\)

27 tháng 8 2015

Ta có : \(\frac{a}{b}0\)   \(\left(1\right)\)

vì \(ad\)\(

23 tháng 8 2020

dễ quá !!!