Cho tam giác ABC có BC = 15cm, AC = 18cm, AB = 12cm. Gọi I và G lần lượt là tâm đường tròn nội tiếp và trọng tâm tam giác ABC.
a) Chứng minh IG song song với BC.
b) Tính độ dài đoạn thẳng IG.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do M là trung điểm BC nên MB = 1 2 BC = 1 2 .15 = 7,5 cm
Mà BD = 6cm nên DM = 7,5 cm – 6cm = 1,5 cm
Do IG // DM nên I G D M = A G A M = 2 3 => IG = 2 3 DM = 1 3 .1,5 = 1 cm
Đáp án: A
1/. _Kẻ pg AD và đ/cao AE (D ; E thuộc BC) ta thấy AG/AE=2/3_bt:(1)
Trong tg ABC vớí pg AD ta có : DB/DC= AB/AC=6/12=1/2 <=> BD=3 ; DC=6 (cm)
Trong tg ABD với pg BI ta có : IA/IB=AB/BD =3/6 <=>AI/AD=2/3 -bt:(2). từ (1) & (2)suy ra đpcm
góc AED=^ACB=48 độ ( hai góc đều cọng với góc^BED thì =180 độ
a) Gọi D, E, F lần lượt là chân các đường phân giác của tam giác ABC lần lượt hạ từ A, B, C.
Gọi T là trung điểm của BC. Do AD là đường phân giác của tam giác ABC nên \(\frac{BD}{AB}=\frac{CD}{AC}\Rightarrow\frac{BD}{5}=\frac{CD}{7}=\frac{BD+CD}{5+7}=\frac{6}{12}=\frac{1}{2}\)\(\Rightarrow\hept{\begin{cases}BD=2,5\\CD=3,5\end{cases}}\)
\(\Delta ABD\) có BI là đường phân giác nên \(\frac{AI}{ID}=\frac{BA}{BD}=\frac{5}{2,5}=2\)
Do G là trọng tâm của tam giác ABC nên \(\frac{AG}{GT}=2\)
Từ các kết quả trên ta được \(\frac{AI}{ID}=\frac{AG}{GT}=2\)suy ra IG // DT hay IG // BC (Theo định lý Thales đảo)
b) Ta có \(\Delta BMI=\Delta BDI\)vì \(BD=BM=2,5;\widehat{DBI}=\widehat{MBI}\); BI là cạnh chung
Suy ra \(\widehat{BMI}=\widehat{BDI}\)
Chứng minh tương tự \(\Delta CNI=\Delta CDI\Rightarrow\widehat{ CNI}=\widehat{CDI}\)
Mà \(\widehat{BDI}+\widehat{CDI}=180^0\)nên \(\widehat{BMI}+\widehat{CNI}=180^0\)suy ra\(\widehat{AMI}+\widehat{ANI}=180^0\)
Vậy tứ giác AMIN nội tiếp hay bốn điểm A, M, I, N cùng nằm trên 1 đường tròn (đpcm)
Cách làm của bạn trên sai rồi nhưng đáp số đúng làm lại cho tự vẽ hình lấy :))
Gọi D là tiếp điểm của đường tròn (I) với AB. Ta tính được BC = 15 ( cm )
\(AD=\frac{AB+AC-BC}{2}=\frac{9+12-15}{2}=3\left(cm\right)\)
Gọi N là giao điểm của BI và AC. Ta có:
\(\frac{BI}{BN}=\frac{BD}{BA}=\frac{6}{9}=\frac{2}{3}=\frac{BM}{BG}\Rightarrow\)IG // NM và \(IG=\frac{2}{3}NM\)
Lần lượt tính AN = 4,5 ( cm ) ; AM = 6 ( cm )
Suy ra NM = 1,5 ( cm ) nên IG = 1( cm )
Vậy IG = 1 ( cm )
Gọi J,D thứ tự là trung điểm BC,BA.
Hạ: GE', IE BA.
JD là đường trung bình ABC nên: JD = 1/2AC = 6
JA = 1/2BC = 15/2
AD = 1/2AB = 9/2
AG/AJ = AE'/AD = 2/3 => AE' = 3
Lại có: AE = AC + AB - BC/2 = 3 => E \(\equiv\) E' => G; I; E
=> IG = EG' - IE' = 1 (cm)
*P/s: Sai đâu thì bn sửa nhé*