Một số tự nhiên có chữ số đầu tiên lớn hơn chữ số hàng đơn vị. Khi viết số đó theo thứ tự ngược lại thì được số mới kém số cũ là một trong ba số 2002, 2003, 2004. Hiệu của chúng là số nào trong ba số đó?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ký hiệu số cần tìm là aBc Số B là số có nhiều chữ số (n chữ số)
Khi viết ngược lại ta được số cBa
Hiệu hai số là
aBc - cBa = 100...0.a + 10.B + c - 100...0.c - 10.B - a (Do B có n chữ số nên có n+1 chữ số 0)
= 99...9.a - 99...9.c = 99...9.(a-c) (có n chữ số 9)
Hiệu của hai số là 1 số chia hết cho 3 nên hiệu của chúng phải là 2004
Gọi số đó là \(A=\overline{a_na_{n-1}...a_1a_0}=10^na_n+10^{n-1}a_{n-1}+...+10^1a_1+10^0a_0\) với \(a_n>a_0\)
Khi viết số này theo thứ tự ngược lại, ta thu được số \(B=\overline{a_0a_1...a_{n-1}a_n}\) \(=10^na_0+10^{n-1}a_1+...+10^1a_{n-1}+10^0a_n\)
\(A-B\) \(=\left(10^n-10^0\right)a_n+\left(10^{n-1}-10^1\right)a_{n-1}+...+\left(10^1-10^{n-1}\right)a_1+\left(10^n-10^0\right)a_0\)
Để ý rằng \(10^i-10^j⋮9,\forall i,j\inℕ\) nên suy ra \(A-B⋮9\). Do đó \(A-B\) không thể bằng giá trị nào trong 2020, 2021, 2022 được vì cả 3 số này đều không chia hết cho 9.
Muốn viết tất cả các số tự nhiên từ 100 đến 999 phải dùng hết bao nhiên chữ số 5?
giải
ta có 100 chia hết cho 5
và số lớn nhất chia hết cho 5 trong dãy số này là:
995
vì cứ mỗi số chia hết cho 5 thì cách 5 đơn vị thì lại là một số chia hết cho 5
nên
từ 100-995 có số chữ số 5 là:
(995-100):5+1=180(số)
đáp số:180 số
đúng thì thanks mình nhé!
Gọi số cần tìm là \(\overline{ab}\)(Điều kiện: \(\left\{{}\begin{matrix}a,b\in N\\0< a\le10\\0\le b\le10\end{matrix}\right.\))
Vì ba lần chữ số hàng chục lớn hơn chữ số hàng đơn vị là 6 đơn vị nên ta có phương trình: \(3a-b=6\)(1)
Vì khi viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới lớn hơn số cũ là 36 đơn vị nên ta có phương trình: \(10b+a-\left(10a+b\right)=36\)
\(\Leftrightarrow10b+a-10a-b=36\)
\(\Leftrightarrow-9a+9b=36\)
\(\Leftrightarrow a-b=-4\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}3a-b=6\\a-b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=10\\a-b=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=a+4=5+4=9\end{matrix}\right.\)(thỏa ĐK)
Vậy: Số cần tìm là 59